
A Simple Version of 
BM25 in Postgres

Di Qi
Lantern



What is BM25? The TLDR version

● BM25 is the most popular algorithm for text 

search - used in ElasticSearch

● It considers term frequency within a document, 

and term frequency across the all documents.

● Uncommon terms are ranked higher



The essentials of BM25

● N - Total number of documents

● df - Document frequency per term

● tf - Term frequency in documents

● avgdl - Average document length



Try 1: Naive implementation

● Auxiliary tables with doc_id, term, tf, doc_len

● Too slow! Poor performance on large datasets

● Excessive index lookups for common terms



Try 2: Inspired by columnar storage

● Auxillary table containing a single row per term.

● Each row contains the term, doc_ids[], fqs[], 

doc_lens[]

● Reduces index lookups to one per term in the 

query



Try 3: Custom aggregate function

● Calculate BM25 scores from arrays with custom 

aggregate function

● Calculates multiple metrics simultaneously - 

unlike SUM or AVG



Performance metrics

● Evaluated on 500k Quora dataset

● Naive method: Unusable due to long execution 

time

● JSON aggregation: ~3 seconds

● Custom aggregate function: ~1 second



Key takeaways

● You can implement a basic version of BM25 in 

Postgres with just SQL

● You can implement an acceptable version of 

BM25 with just PLRust, a trusted PL

● You can make this even faster with privileged PLs 

to build custom functions


