
PostgreSQL Observed—
and Explained

Stacey Haysler Karen Jex

PgConf.EU October 24, 2024

Stacey Haysler

CFO and COO at PGX, Inc.

President, U.S. PostgreSQL Association

Organizer, San Francisco Bay Area PUG

Most definitely not an engineer

Karen Jex

Senior Solutions Architect @ Crunchy Data

PostgreSQL Europe Board Member

PostgreSQL Europe Diversity Committee Chair

Why this talk

Why this talk

Why this talk

Why this talk

 Why this talk

The Assistant

Autovacuum

Autovacuum

“Optional but highly recommended”

https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#AUTOVACUUM

https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#AUTOVACUUM

Autovacuum

“Aha! That’s what’s slowing things

down. I’ll just switch autovacuum off

and everything will speed up.”
Anonymous PostgreSQL User

(Who probably later regretted their life choices)

https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#AUTOVACUUM

https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#AUTOVACUUM

Autovacuum

• Launches VACUUM / ANALYZE as needed

• SET log_autovacuum_min_duration=0

• Will run to avoid transaction ID wraparound even if disabled

https://www.postgresql.org/docs/current/sql-vacuum.html

https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Tuning Autovacuum
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html

• autovacuum_max_workers

• autovacuum_naptime

• autovacuum_vacuum_threshold

• autovacuum_vacuum_insert_threshold

• autovacuum_analyze_threshold

• autovacuum_vacuum_scale_factor

• autovacuum_vacuum_insert_scale_factor

• autovacuum_analyze_scale_factor

• autovacuum_freeze_max_age

• autovacuum_multixact_freeze_max_age

• autovacuum_vacuum_cost_delay

• autovacuum_vacuum_cost_limit

98% disk space use is bad.

98% Disk Space Use is Bad!
Give your Database Breathing Space!

ERROR: could not extend file

"base/20429/2187": No space left on device

HINT: Check free disk space.

98% Disk Space Use is Bad!
Data Directory Full

Image par Pete Linforth de Pixabay

98% Disk Space Use is Bad!
WAL Directory Full

https://pixabay.com/fr/users/thedigitalartist-202249/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1067100
https://pixabay.com/fr/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1067100

“I’ll just delete some WAL files

to make some space.”
Anonymous PostgreSQL User

98% Disk Space Use is Bad!
WAL Directory Full

98% Disk Space Use is Bad!
Fixing Disk Full Issues

98% Disk Space Use is Bad!
Avoiding Disk Full Issues

Back-ups

1 = 0

Backups

“With a single backup,

you’re already ahead of the game”
Karen Jex

Backups

Backups

Foreign Data Wrappers

Foreign Data Wrappers
“Foreign Data”
https://www.postgresql.org/docs/current/ddl-foreign-data.html

“PostgreSQL implements portions of the SQL/MED specification, allowing

you to access data that resides outside PostgreSQL using regular SQL

queries. Such data is referred to as foreign data.

Foreign data is accessed with help from a foreign data wrapper. A foreign

data wrapper is a library that can communicate with an external data

source, hiding the details of connecting to the data source and obtaining

data from it.”

https://www.postgresql.org/docs/current/ddl-foreign-data.html

Foreign Data Wrappers
“Foreign Data”

https://wiki.postgresql.org/wiki/Foreign_data_wrappers

https://wiki.postgresql.org/wiki/Foreign_data_wrappers

Foreign Data Wrappers
“Foreign Data”

https://wiki.postgresql.org/wiki/Foreign_data_wrappers

https://wiki.postgresql.org/wiki/Foreign_data_wrappers

Foreign Data Wrappers
Even PostgreSQL is “Foreign”

postgres_fdw

www.postgresql.org/docs/current/postgres-fdw.html

www.crunchydata.com/blog/understanding-postgres_fdw

https://www.postgresql.org/docs/current/postgres-fdw.html
https://www.crunchydata.com/blog/understanding-postgres_fdw

Foreign Data Wrappers
Write your Own FDW

https://www.postgresql.org/docs/current/fdwhandler.html

“The foreign data wrappers included in the standard
distribution are good references when trying to write your
own. Look into the contrib subdirectory of the source tree.”

Indexes and Primary Keys
• Indexes solve a lot of problems. Make sure your each of your tables

has a primary key. You will be quite unhappy later if they don’t,
because everything is going to run much slower than it could.

Indexes and Primary Keys
Primary Keys

Indexes and Primary Keys
Primary Keys

Indexes and Primary Keys
Primary Keys

Indexes and Primary Keys
Primary Keys

Indexes and Primary Keys
Primary Keys

Indexes and Primary Keys
Primary Keys
https://www.postgresql.org/docs/current/ddl-constraints.html

● Uniquely identify a row in a table

● One or more columns

● Natural or surrogate

● Unique index

● Only one PK per table

● Needed for foreign key constraints

https://www.postgresql.org/docs/current/ddl-constraints.html

Indexes and Primary Keys
Indexes

Indexes and Primary Keys
Indexes

Indexes and Primary Keys
Indexes

● One or more columns

● Index on an expression

● Postgres index types: b-tree, Hash, GiST, SP-GiST, GIN, BRIN

● Default index: b-tree (balanced tree)

● Partial index

● Covering index

https://www.postgresql.org/docs/current/sql-createindex.html

Testing

• Test the upgrade before you put it into production.

Testing

Test on the Test Server

• Before running the test, make sure you are on the test server, not production.

• Check again before starting.

Test on the Test Server

“I accidentally connected to Production.”
DBA 5-word horror story

Version Upgrades, Great and Small

Version Upgrades, Great and Small
Minor Version Upgrades

16.1: Also ensure that the is_superuser parameter is set correctly in such processes. No specific
security consequences are known for that oversight, but it might be significant for some extensions.

16.2: Tighten security restrictions within REFRESH MATERIALIZED VIEW CONCURRENTLY (Heikki
Linnakangas)
One step of a concurrent refresh command was run under weak security restrictions. If a materialized
view's owner could persuade a superuser or other high-privileged user to perform a concurrent refresh
on that view, the view's owner could control code executed with the privileges of the user running
REFRESH. Fix things so that all user-determined code is run as the view's owner, as expected.

16.3: However, a security vulnerability was found in the system views pg_stats_ext and
pg_stats_ext_exprs , potentially allowing authenticated database users to see data they shouldn't.
If this is of concern in your installation, follow the steps in the first changelog entry below to rectify it.

https://www.postgresql.org/support/versioning

17.0

16.4
Major Version Minor Version

Version Upgrades, Great and Small
Version Numbering

https://www.postgresql.org/support/versioning

https://www.postgresql.org/developer/roadmap/

Version Upgrades, Great and Small
Release Roadmap

https://www.postgresql.org/developer/roadmap/

https://www.postgresql.org/support/versioning

Version Upgrades, Great and Small
Minor Version Upgrades

https://www.postgresql.org/support/versioning

“We have to use PostgreSQL 15.3.”
Anonymous PostgreSQL User

Version Upgrades, Great and Small
Minor Version Upgrades

“The community considers performing minor upgrades to be

less risky than continuing to run an old minor version.”

“We recommend that users always run the

current minor release associated with their major version.”

https://www.postgresql.org/support/versioning

Version Upgrades, Great and Small
Minor Version Upgrades

https://www.postgresql.org/support/versioning

“We have to use PostgreSQL 13.”
Anonymous PostgreSQL User

Version Upgrades, Great and Small
Major Version Upgrades

Version Upgrades, Great and Small
Major Version Upgrades

 WITH items_externalsales AS (
 SELECT item_id, COUNT(*) as sales, SUM(price) as revenue FROM items_itempriorsale GROUP BY item_id
),
 items_sales AS (
 SELECT m.id,
 SUM(pol.quantity) AS quantity,
 SUM(pol.quantity * pol.price_each) AS revenue
 FROM items_item m
 JOIN items_itemproduct mp ON mp.item_id = m.id
 JOIN products_product p ON p.id = mp.product_id
 JOIN orders_productorderline pol ON pol.product_id = p.id
 JOIN orders_orderline ol ON ol.id = pol.orderline_ptr_id
 JOIN orders_order o ON o.id = ol.order_id
 WHERE ol.status = 'DONE'
 GROUP BY m.id
),
 item_ratings AS (
 SELECT m.id as item_id, avg(r.rating)::numeric(2,1) as rating
 FROM items_item m
 JOIN ratings_rating r ON m.id = r.item_id
 WHERE r.rating > 0
 GROUP BY m.id
 HAVING COUNT(*) >= 5
)
 SELECT m.*,
 CASE WHEN days_asnew > 0 THEN revenue / days_asnew ELSE 0 END as revenue_per_day
 FROM (
 SELECT m.title,
 m.asnew_at as asnew_at,
 CASE WHEN m.asnew_at <= '2007-12-24'::DATE THEN TRUE ELSE FALSE END as approximate,
 m.active as active,
 m.special as special,
 m.purchase as purchase,
 m.type as "type",
 COALESCE(ms.quantity, 0)
 + COALESCE((SELECT SUM(sales) FROM items_externalsales es WHERE es.item_id = m.id), 0)
 + COALESCE((SELECT SUM(sales) FROM items_historic_sales hs WHERE hs.item_id = m.id), 0)
 as quantity,
 COALESCE(ms.revenue, 0)
 + COALESCE((SELECT SUM(revenue) FROM items_externalsales es WHERE es.item_id = m.id), 0)

Queries

• Your super-cool custom query is a likely source of your problems.

Queries

Queries

Queries

WITH ranked_sales AS (
 SELECT
 store_id,
 DATE_TRUNC('month', transaction_date) AS month,
 SUM(transaction_qty) AS total_monthly_unit_sales,
 RANK() OVER (PARTITION BY DATE_TRUNC('month', transaction_date)
 ORDER BY SUM(transaction_qty) DESC) AS sales_rank
 FROM coffee_shop_sales
 WHERE date_trunc('year', transaction_date) = date_trunc('year', now()) - interval '1 year'
 GROUP BY 1, 2)
SELECT
 to_char(month, 'YYYY-MM') AS month,
 store_id,
 round(total_monthly_unit_sales,2) AS total_monthly_sales
FROM ranked_sales
WHERE sales_rank = 1
ORDER BY month;

EXPLAIN ANALYZE

 month | store_id | total_monthly_sales
---------+----------+--------------------
-
 2023-01 | 4 | 14153.00
 2023-02 | 4 | 13392.00
 2023-03 | 4 | 17246.00
 2023-04 | 4 | 20594.00
 2023-05 | 4 | 27312.00
 2023-06 | 4 | 28737.00

Queries
Execution Plans

 QUERY PLAN

--
 Sort (cost=5087.15..5087.16 rows=2 width=68) (actual time=120.869..120.885 rows=6 loops=1)
 Sort Key: (to_char(ranked_sales.month, 'YYYY-MM'::text))
 Sort Method: quicksort Memory: 25kB
 -> Subquery Scan on ranked_sales (cost=5069.65..5087.14 rows=2 width=68) (actual time=120.699..120.722 rows=6 loops=1)
 Filter: (ranked_sales.sales_rank = 1)
 -> WindowAgg (cost=5069.65..5081.30 rows=466 width=28) (actual time=120.691..120.712 rows=6 loops=1)
 Run Condition: (rank() OVER (?) <= 1)
 -> Sort (cost=5069.65..5070.82 rows=466 width=20) (actual time=120.686..120.703 rows=24 loops=1)
 Sort Key: (date_trunc('month'::text, (coffee_shop_sales.transaction_date)::timestamp with time zone)), (sum(coffee_shop_sales.transaction_qty)) DESC
 Sort Method: quicksort Memory: 26kB
 -> Finalize GroupAggregate (cost=4978.36..5049.00 rows=466 width=20) (actual time=114.155..120.691 rows=24 loops=1)
 Group Key: coffee_shop_sales.store_id, (date_trunc('month'::text, (coffee_shop_sales.transaction_date)::timestamp with time zone))
 -> Gather Merge (cost=4978.36..5038.72 rows=439 width=20) (actual time=114.078..120.683 rows=48 loops=1)
 Workers Planned: 1
 Workers Launched: 1
 -> Partial GroupAggregate (cost=3978.35..3989.32 rows=439 width=20) (actual time=102.044..108.127 rows=24 loops=2)
 Group Key: coffee_shop_sales.store_id, (date_trunc('month'::text, (coffee_shop_sales.transaction_date)::timestamp with time zone))
 -> Sort (cost=3978.35..3979.44 rows=439 width=16) (actual time=101.955..104.663 rows=74558 loops=2)
 Sort Key: coffee_shop_sales.store_id, (date_trunc('month'::text, (coffee_shop_sales.transaction_date)::timestamp with time zone))
 Sort Method: external merge Disk: 2296kB

 Worker 0: Sort Method: external merge Disk: 2096kB
 -> Parallel Seq Scan on coffee_shop_sales (cost=0.00..3959.08 rows=439 width=16) (actual time=0.034..90.534 rows=74558 loops=2)
 Filter: (date_trunc('year'::text, (transaction_date)::timestamp with time zone) = (date_trunc('year'::text, now()) - '1
year'::interval))
 Planning Time: 0.382 ms
 Execution Time: 121.485 ms

Your Application
The problem isn’t always the database. Look at your app.

Client

 Consultant

“Our application needs max_connections set to 45,000.”

<Attempts to not look horrified.>
<Fails.>

Your Application

max_connections parameter

Entire PostgreSQL instance

Default: 100

Connection pooling

Separate pools for different use-cases

Don’t keep too many connections open

Minimise rapidly opening and closing connections

How to Avoid Problems

Read the documentation.

Current version:
https://www.postgresql.org/docs/current/index/html

Hitchhiker’s Guide to the Postgres Documentation:

https://l_avrot.gitlab.io/slides/doc_20220513.html#

How to Avoid Problems
Read the Docs

“If you see anything in the documentation that is not
correct, does not match your experience with the
particular feature or requires further clarification, please
use this form to report a documentation issue.”

How to Avoid Problems
Help to Make the Docs Better

How to Avoid Problems
Help to Make the Docs Better

How to Avoid Problems

If you don’t know, ask. The only stupid question is the one you should
have asked, and didn’t—and now you have severe problems, such as
data loss, data corruption, or a server shutdown.

PostgreSQL Mailing Lists: https://lists.postgresql.org/

Postgres Slack: postgresteam.slack.com

How to Avoid Problems
Ask Questions

PostgreSQL Wiki:

https://wiki.postgresql.org/wiki/Main_Page

Planet PostgreSQL:

https://planet.postgresql.org/

How to Avoid Problems
Wiki and Blogs

PostgreSQL Europe https://www.youtube.com/@pgeu

PgUS https://www.youtube.com/@pgus

SF PUG https://www.youtube.com/@sanfranciscobayareapostgre4592

How to Avoid Problems
Talk Recordings

https://www.youtube.com/@pgus
https://www.youtube.com/@sanfranciscobayareapostgre4592

● Podcasts

● Conferences

● Meetups

● User Groups

● …

How to Avoid Problems
And More

Questions?

Feedback!

https://www.postgresql.eu/events/pgconfeu2024/feedback

https://www.postgresql.eu/events/pgconfeu2024/feedback/5870/

Thank you!

