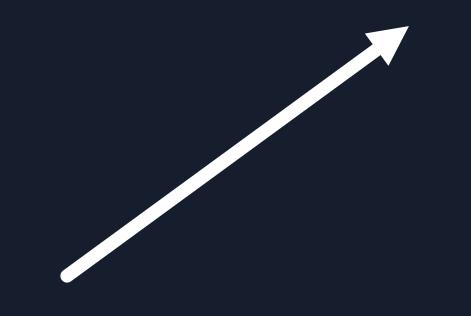
Dissimilarity search: implementing inmemory vector search algorithms for PostgreSQL

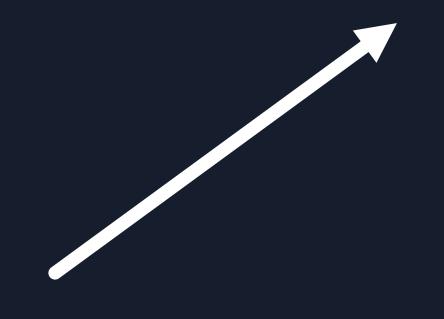
Jonathan Katz

aws

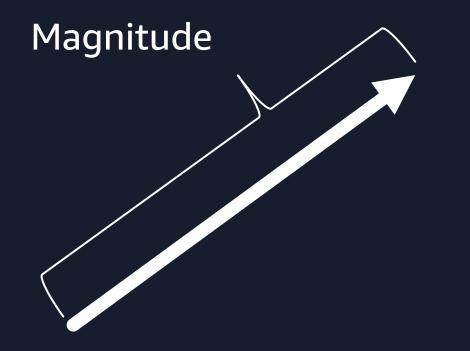
(he/him) Principal Product Manager – Technical AWS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.



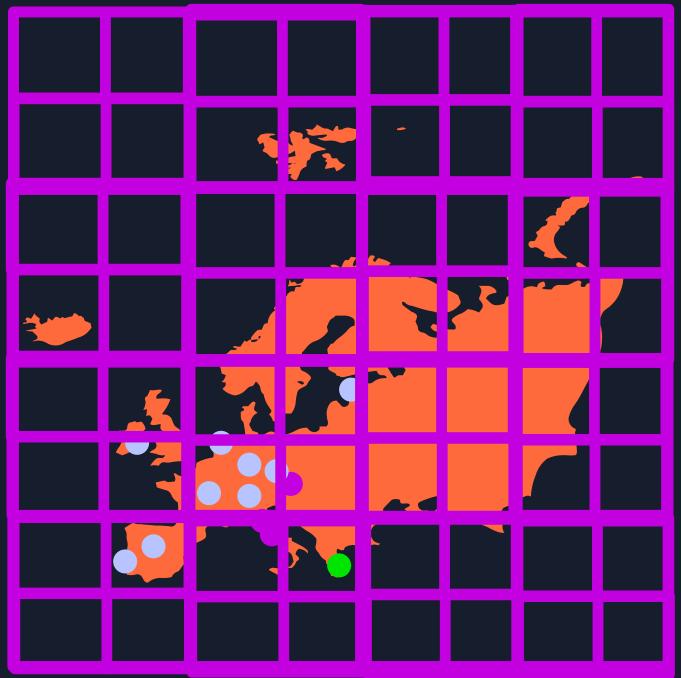


[0.5, 0.5]



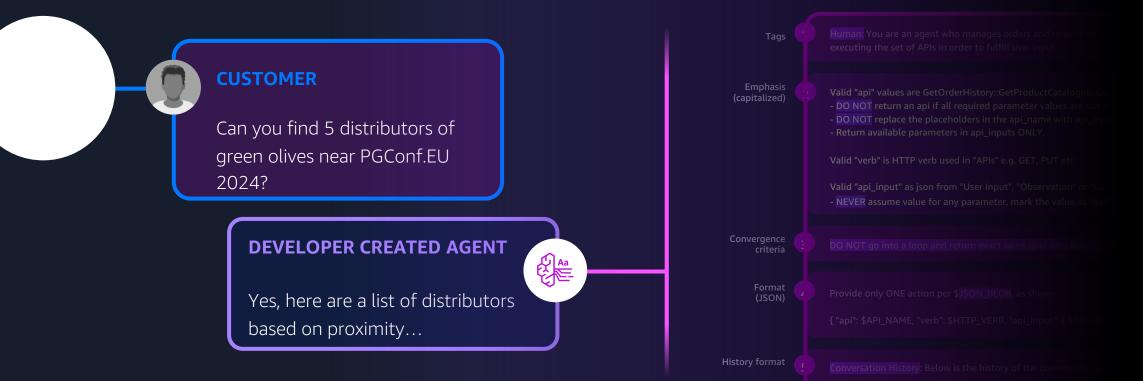
$||[0.5, 0.5]|| = \sqrt{(0.5^2 + 0.5^2)} = 0.70710$

SELECT city_name FROM conferences WHERE conference_name LIKE 'PGConf EU%' ORDER BY conference.geocode <-> '(38.0004,23.7195)'::point LIMIT 3;



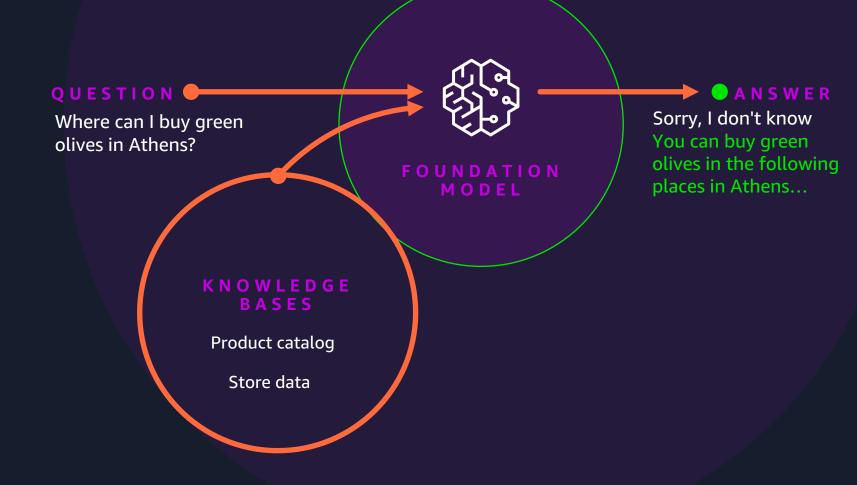
Foundations of vector search

- Vectors in "vector space" (search area) must all have the same number of dimensions
 - Each dimension should be comparable to each other
- Distance function defines proximity
 - Distance is always ≥ 0
 - Distance from a vector to itself is 0

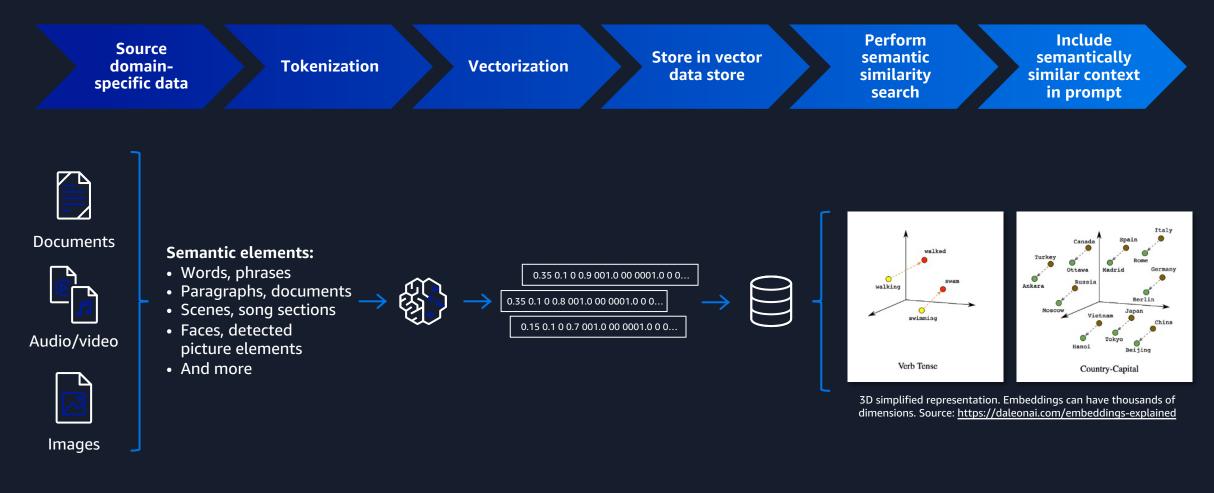


Retrieval-augmented generation (RAG)

Configure foundation model to interact with your data



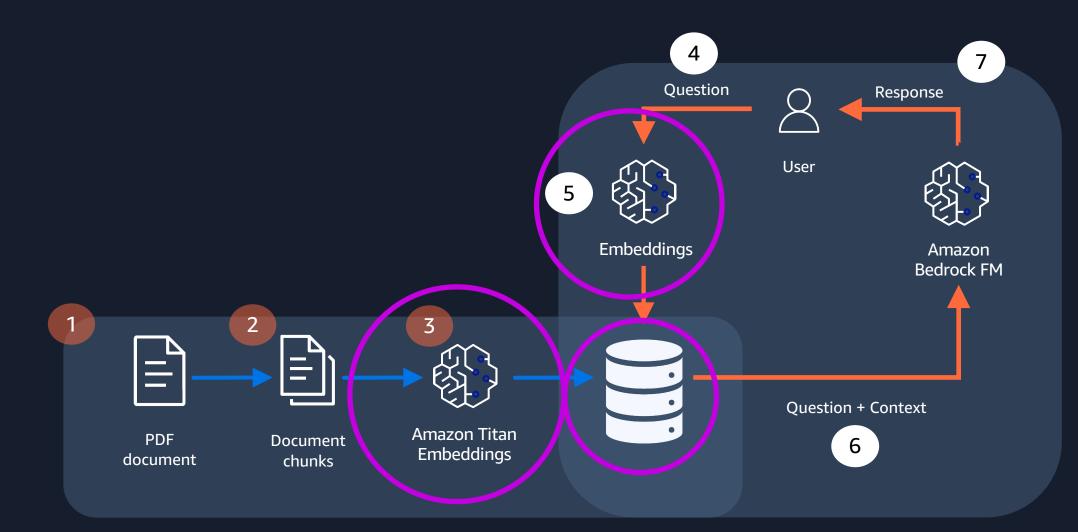
What are embeddings?



Embeddings: When vector elements are semantic, used in generative AI

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How embeddings are used



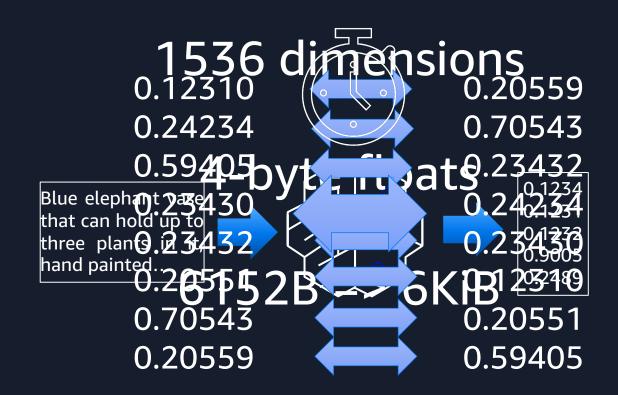
Challenges with larger vectors

- Generation time
- Size

aws

Compression

• Query time



1,000,000 => 5.7GB

Approximate nearest neighbor (ANN)

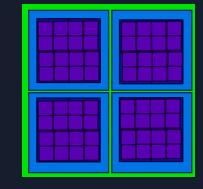
• Find similar vectors without searching all of them

- Faster than exact nearest neighbor
- "Recall" % of expected results

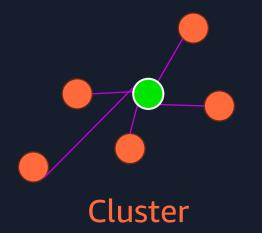
Recall: 80%

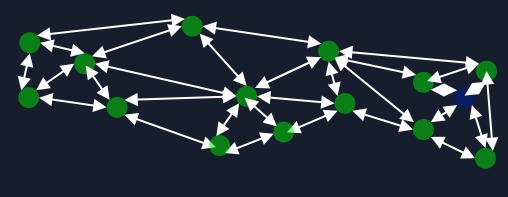
ANN indexing algorithm types

Hash



Tree



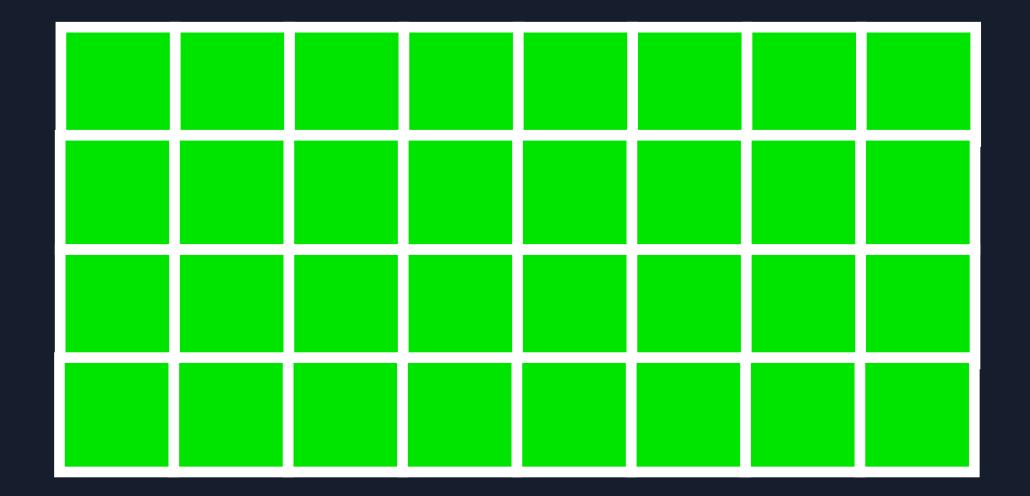


Index layout in memory

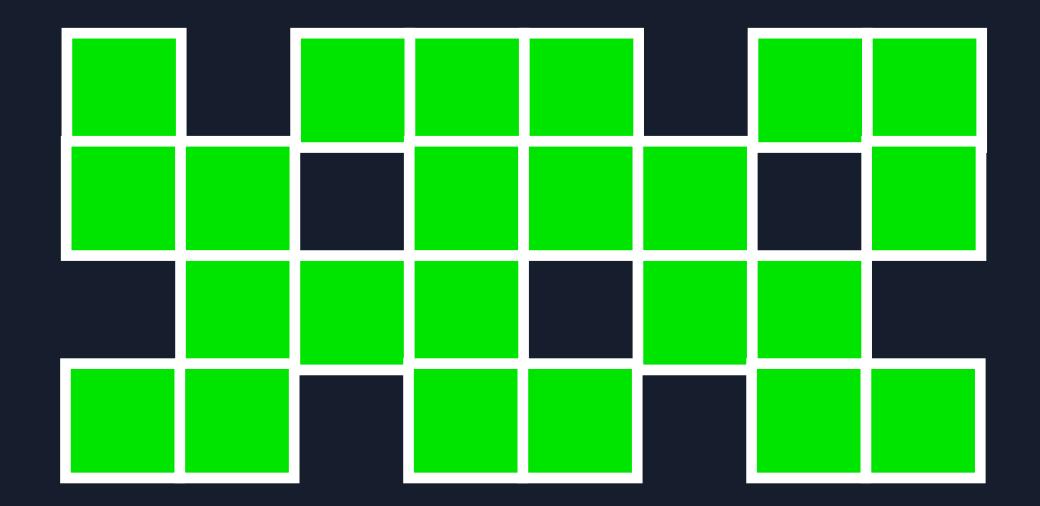


© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

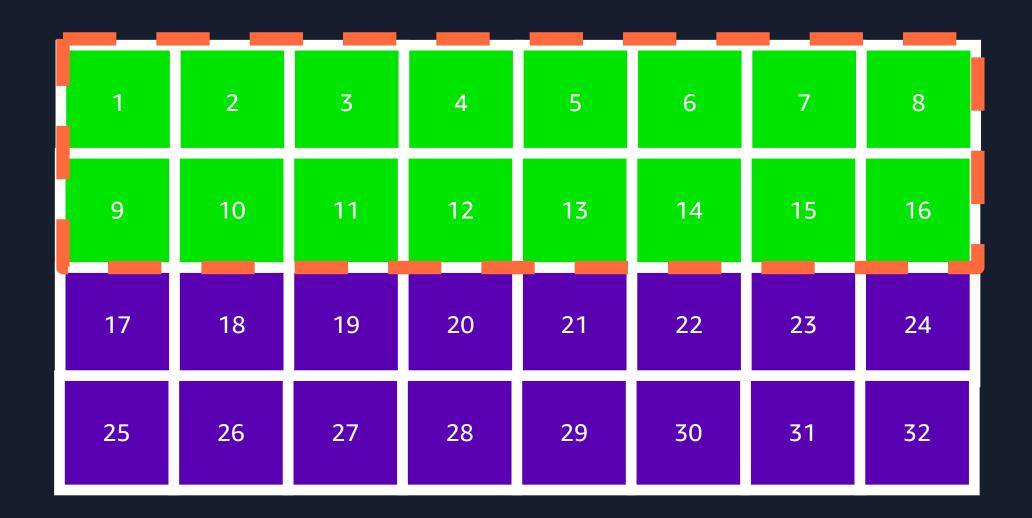
Index layout in a database



Index layout in a database



Index size exceeds available memory



Index size exceeds available memory

Index size exceeds available memory

Where memory and storage diverge

- Continuous allocations vs. pages
- Data layout on disk
- Percentage of index in memory
- Hardware acceleration strategies (CPU vs. GPU)

Vector search design principles for PostgreSQL

Take shortcuts, where applicable

Design for 8KiB blocks (page size)

Leverage PostgreSQL infrastructure

 \hookrightarrow Understand your tradeoffs

What is pgvector?

Adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Co-locate with embeddings

Exact nearest neighbor (K-NN) Approximate nearest neighbor (ANN)

Supports HNSW & IVFFlat indexing, with options for scalar and binary quantization

github.com/pgvector/pgvector

aws

Distance operations include ' Cosine, Euclidean/L2, Manhattan/L1, Dot product, Hamming, Jaccard

Example pgvector query

SET hnsw.ef_search TO 60;

SELECT id, text_chunk

FROM documents

ORDER BY

LIMIT 10

embedding <=> '[0.003421, -0.23053, 0.402153, ...]'::vector

What do we need to define?

- 1. Data type
- 2. Distance functions and operators
- 3. Indexing strategy

What do we need to define?

1. Data type

- 2. Distance functions and operators
- 3. Indexing strategy

typedef struct Vector

{ int32 vl_len_; /* varlena header (do not touch directly!) */ int16 dim; /* number of dimensions */ int16 unused; /* reserved for future use, always zero */ float x_FLEXIBLE_ARRAY_MEMBER; } Vector;

🖷 PostgreSQL Infrastructure: 🔍 TOAST

- TOAST (<u>The Oversized-Attribute Storage Technique</u>) is a mechanism for storing data larger than 8KB
 - By default, PostgreSQL "TOASTs" values over 2KB (510d 4-byte float)
- Storage types:
 - PLAIN: Data stored inline with table
 - EXTENDED: Data stored/compressed in TOAST table when threshold exceeded
 - pgvector default before 0.6.0
 - EXTERNAL: Data stored in TOAST table when threshold exceeded
 - pgvector default 0.6.0+
 - MAIN: Data stored compressed inline with table

Visualizing TOAST for pgvector

PLAIN

EXTENDED / EXTERNAL

⇐ Tradeoffs: Impact of TOAST on vector data

- Traditionally, TOAST data is not on the "hot path"
 - Impacts query plan and maintenance operations
- Compression is ineffective
- Unable to use for index pages

Space utilization on a page

Dimensions	Vectors / Page	Wasted Space (B)
128	15	308
256	7	916
384	5	428
512	3	1,988
768	2	2,000
1,024	1	4,060
1,536	1	2,012
2,000	1	156

PAGE_SIZE - PAGE_HEADER - (VECTORS * 4) - VECTORS * (4 * DIMS + 8)

What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

Distance functions / operators

Euclidean / L2	<->	CREATE FUNCTION l2_distance(vector, vector) RETURNS float8
Cosine	<=>	CREATE MODNEEL PATHNAME' EQNICUACE istance (vector, vegtand) ABEEUSNEIFoat8 ASRAMQEULEAFETHNAME' LANGUAGE C
Inner Product	<#>	
Manhattan / Taxicab / L1	<+>	IMMUTABLE STRICT PARALLEL SAFE;
Hamming	<~>	

Jaccard

aws

<%)

PostgreSQL Infrastructure: Function definitions

FUNCTION_PREFIX PG_FUNCTION_INFO_V1(12_distance);

Datum

{

```
12_distance(PG_FUNCTION_ARGS)
```

Vector	<pre>*a = PG_GETARG_VECTOR_P(0);</pre>
Vector	<pre>*b = PG_GETARG_VECTOR_P(1);</pre>

```
CheckDims(a, b);
```

PG_RETURN_FLOAT8(sqrt((double)

VectorL2SquaredDistance(a->dim, a->x, b->x)));

}

Shortcut: SIMD using compiler autovectorization

VectorCosineSimilarity(int dim, float *ax, float *bx)

```
/* ... */
/* Auto-vectorized */
for (int i = 0; i < \dim; i++)
{
      similarity += ax[i] * bx[i];
      norma += ax[i] * ax[i];
      normb += bx[i] * bx[i];
}
/* Use sqrt(a * b) over sqrt(a) * sqrt(b) */
return (double) similarity / sqrt((double) norma * (double) normb);
```

{

Shortcut: CPU dispatching (AVX-512)

```
TARGET_AVX512_POPCOUNT static uint64
```

{

BitHammingDistanceAvx512Popcount(uint32 bytes, unsigned char *ax, unsigned char *bx, uint64 distance)

```
__m512i dist = _mm512_setzero_si512();
for (; bytes >= sizeof(__m512i); bytes -= sizeof(__m512i))
{
    __m512i axs = _mm512_loadu_si512((const __m512i *) ax);
    __m512i bxs = _mm512_loadu_si512((const __m512i *) bx);
    dist = _mm512_add_epi64(dist, _mm512_popcnt_epi64(_mm512_xor_si512(axs, bxs)));
    ax += sizeof(__m512i);
    bx += sizeof(__m512i);
}
```

```
distance += _mm512_reduce_add_epi64(dist);
```

return BitHammingDistanceDefault(bytes, ax, bx, distance);

What do we need to define?

- 1. Data type
- 2. Distance functions and operators
- 3. Indexing strategy

PostgreSQL index interfaces

- GiST (Generalized Search Tree)
 - Supports K-NN queries
- SP-GiST (Space-partitioned Generalized Search Tree)
 - Supports K-NN queries
- GIN (Generalized Inverted Index)
- BRIN (Block Range Index)
- B-tree
- Hash

Example: Interfacing with GiST

- consistent
- union
- penalty
- picksplit
- same
- compress
- decompress
- distance
- fetch

⇐ Index access methods ("custom indexes")

- Let you define indexes that don't fit existing interfaces
 - Properties
 - Methods
- "More work"
 - Responsible for vacuum, WAL, locking, planning, et al.
 - (More) responsible for impact due to upstream changes

Rev index access method properties for pgvector

- amcanorder => false
- amcanorderbyop => true
- amcanbuildparallel => true

Reference: <u>https://www.postgresql.org/docs/current/index-api.html</u>

Rev index access method functions for pgvector

- ambuild
- aminsert
- ambulkdelete
- amcostestimate
- ambeginscan
- amrescan

aws

• amgettuple

Reference: <u>https://www.postgresql.org/docs/current/index-functions.html</u>

🖷 Key index access method functions for pgvector

• ambuild

aws

• aminsert

Reference: <u>https://www.postgresql.org/docs/current/index-functions.html</u>

R Key index access method functions for pgvector

• ambulkdelete

aws

Reference: <u>https://www.postgresql.org/docs/current/index-functions.html</u>

R Key index access method functions for pgvector

• amcostestimate

Reference: <u>https://www.postgresql.org/docs/current/index-functions.html</u>

R Key index access method functions for pgvector

- ambeginscan
- amrescan

aws

• amgettuple

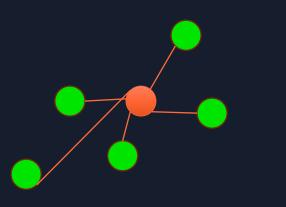
Reference: https://www.postgresql.org/docs/current/index-functions.html

pgvector index methods: IVFFlat and HNSW

IVFFlat

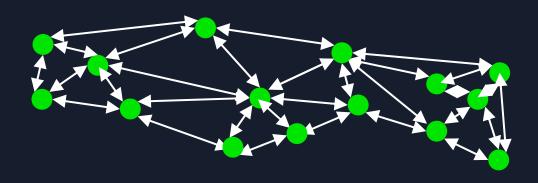
aws

- K-means based
- Organize vectors into lists
- Requires prepopulated data
- Insert time bounded by # lists



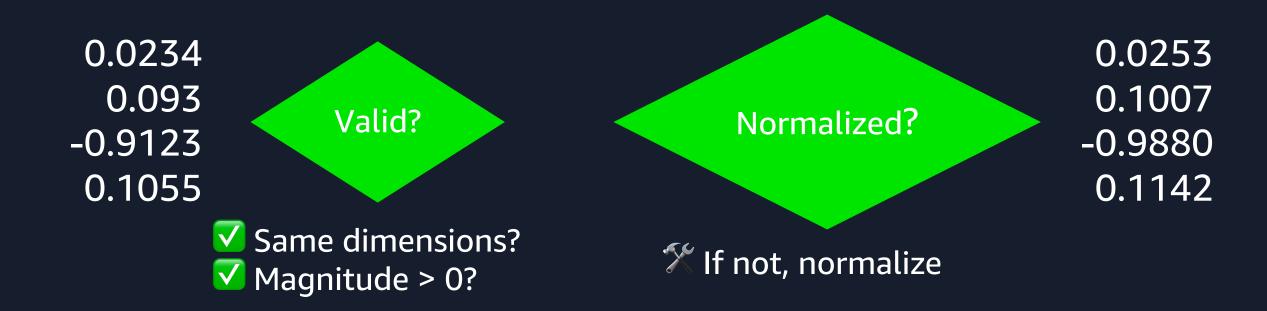
• HNSW

- Graph based
- Organize vectors into "neighborhoods"
- Iterative insertions
- Insertion time increases as data in graph increases



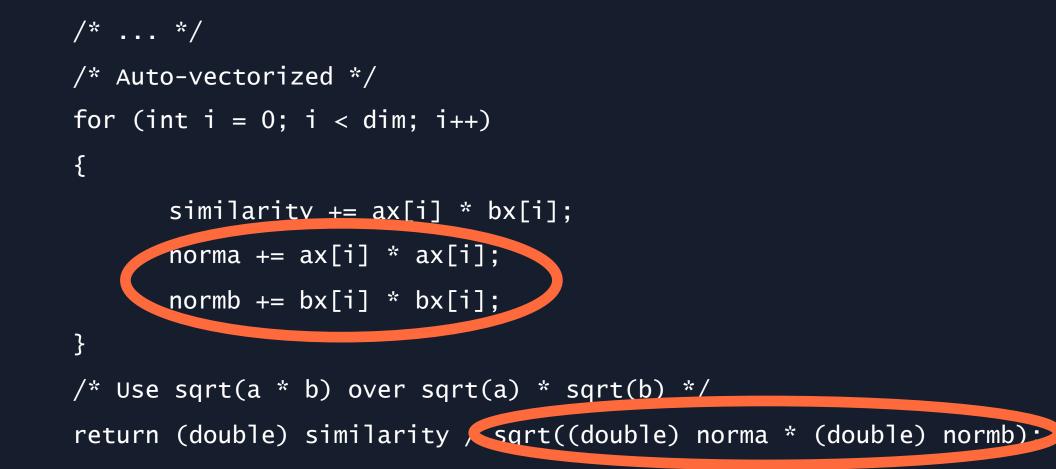
Shortcut: Store normalized vectors in index

L2 normalization = v / || v ||



Shortcut: skip operations with normalization

VectorCosineSimilarity(int dim, float *ax, float *bx)



{

Shortcut: skip operations with normalization

```
VECTOR_TARGET_CLONES static float
VectorInnerProduct(int dim, float *ax, float *bx)
{
      float
                    distance = 0.0;
      /* Auto-vectorized */
      for (int i = 0; i < dim; i++)
             distance += ax[i] * bx[i];
```

return distance;

}

Shortcut: skip operations with normalization

FUNCTION_PREFIX PG_FUNCTION_INFO_V1(vector_negative_inner_product);

Datum

{

vector_negative_inner_product(PG_FUNCTION_ARGS)

Vector *a = PG_GETARG_VECTOR_P(0); Vector *b = PG_GETARG_VECTOR_P(1);

CheckDims(a, b);

PG_RETURN_FLOAT8((double) - VectorInnerProduct(a->dim, a->x, b->x));

}

What do we need to define?

- 1. Data type
- 2. Distance functions and operators
- 3. Indexing strategy

2. HNSW

Building an IVFFlat index

- 1. Sample the overall vectors in the table (MAX(50*lists), 10,000))
 - Uses BlockSampler (ANALYZE method)
- 2. Calculate K-means (ivfflat.lists)
- 3. Assign vectors to lists in memory
- 4. Sort vectors in lists 👘
- 5. Save index to storage 👘

IVFFlat: sampling

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: sampling

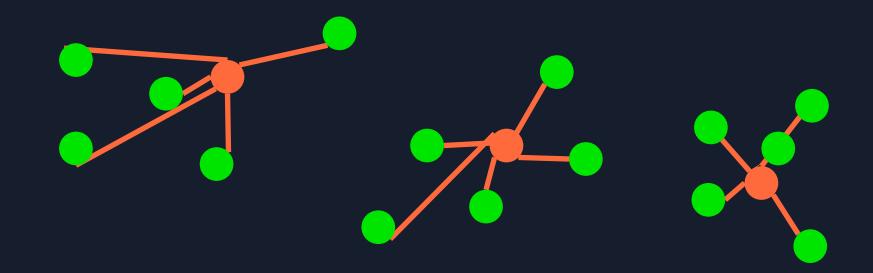
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: K-means

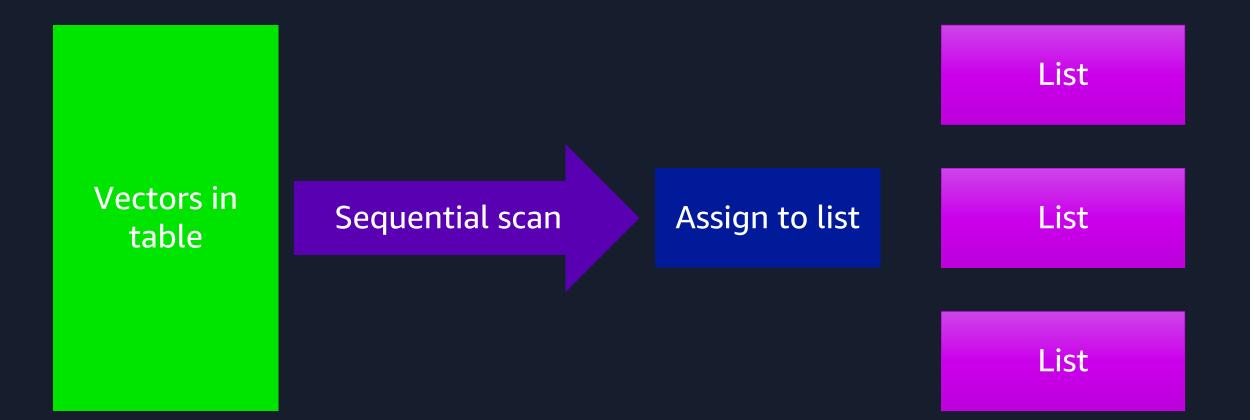
pgvector Elkan's K-means algorithms

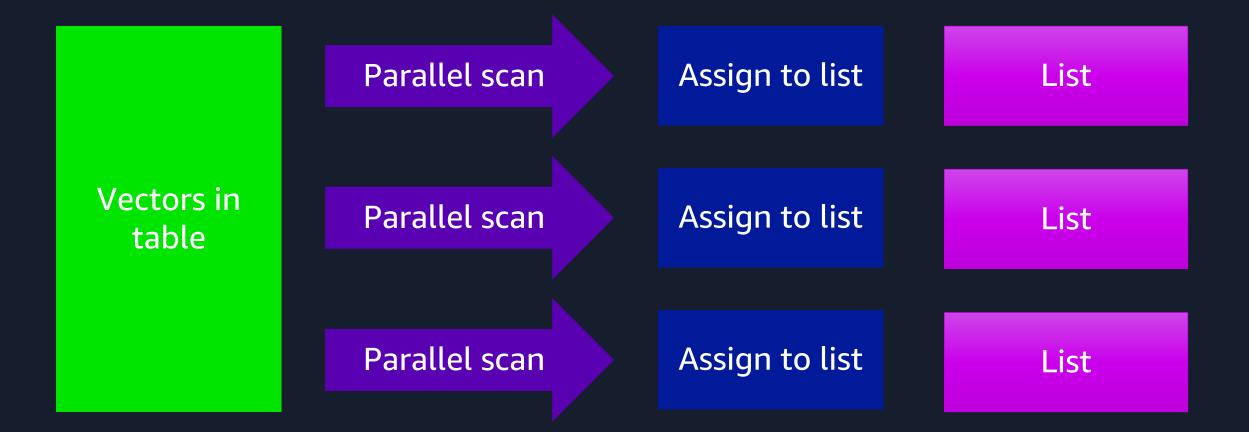
ivfflat.lists = 3

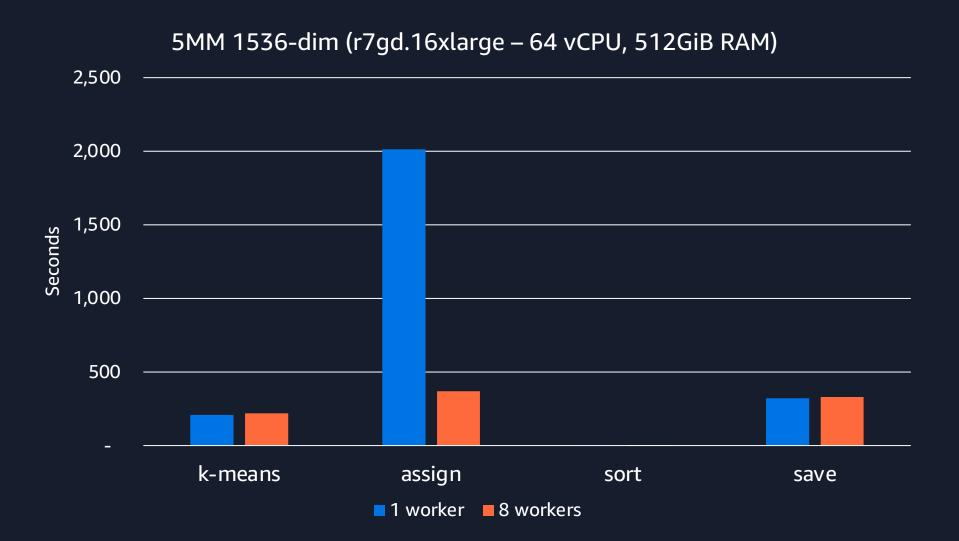
IVFFlat: list assignment

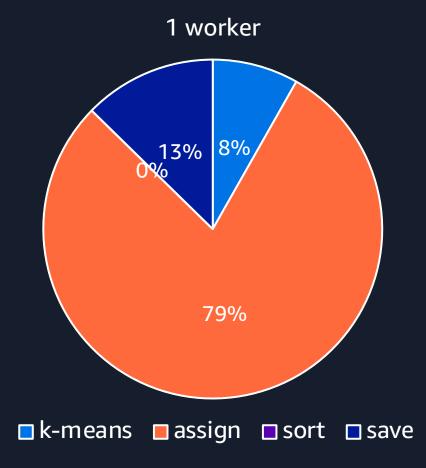


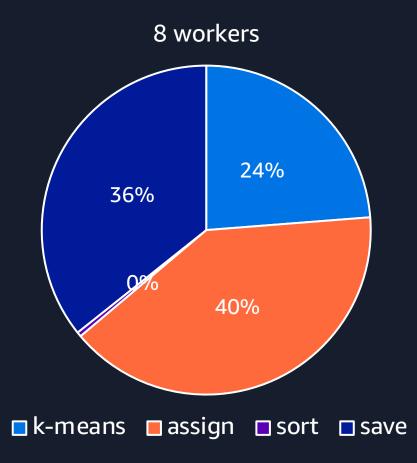
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.









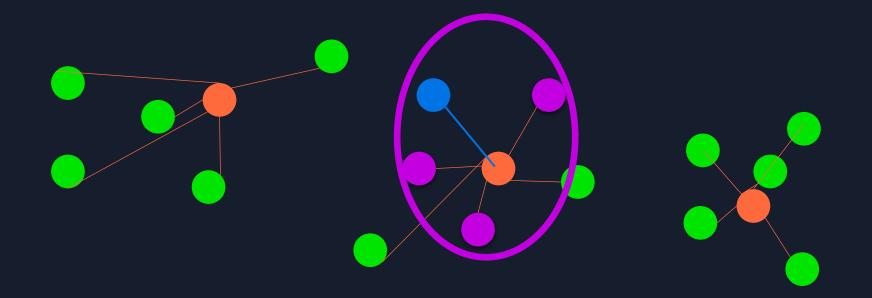


© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: Save index to storage

Root	List 1 Root	List 2 Root	List 3 Root	List 1	List 1	List 1	List 1
List 1	List 1	List 1	List 1	List 1	List 2	List 2	List 2
List 2	List 2	List 2	List 2	List 2	List 2	List 3	List 3
List 3	List 3	List 3	List 3	List 3	List 3	List 3	

Querying an IVFFlat index



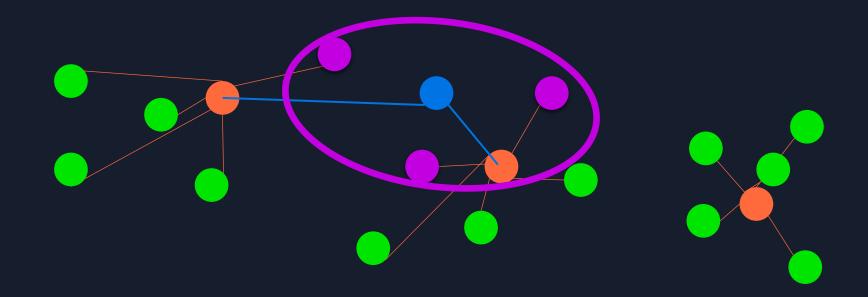
SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY \$1 <-> embedding LIMIT 3

Querying an index an IVFFlat index (1 probe)

Root	List 1 Root	List 2 Root	List 3 Root	List 1	List 1	List 1	List 1
List 1	List 1	List 1	List 1	List 1	List 2	List 2	List 2
List 2	List 2	List 2	List 2	List 2	List 2	List 3	List 3
List 3	List 3	List 3	List 3	List 3	List 3	List 3	

Querying an IVFFlat index



SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY \$1 <-> embedding LIMIT 3

Querying an IVFFlat index (2 probes)

Root	List 1 Root	List 2 Root	List 3 Root	List 1	List 1	List 1	List 1
List 1	List 1	List 1	List 1	List 1	List 2	List 2	List 2
List 2	List 2	List 2	List 2	List 2	List 2	List 3	List 3
List 3	List 3	List 3	List 3	List 3	List 3	List 3	

IVFFlat considerations

- Temporal locality is directly impacted by both cluster quality and query patterns
- Latency grows linearly with probes
- Lookups outside of memory can be very expensive
- Insertions / updates can skew lookups and query quality
- Opportunities
 - Streaming I/O
 - Quantization (available, requires more evaluation)
 - Additional algorithmic improvements (e.g. SPANN)

What do we need to define?

- 1. Data type
- 2. Distance functions and operators
- 3. Indexing strategy
 - 1. IVFFlat

Hierarchical navigable small worlds (HNSW)

- Each vector organized into "microclusters" ("neighborhoods")
- Spend minimal time in "upper layers" most search in bottom layer ("Layer O")

HNSW index building parameters

m

Maximum number of bidirectional links between indexed vectors Default: 16

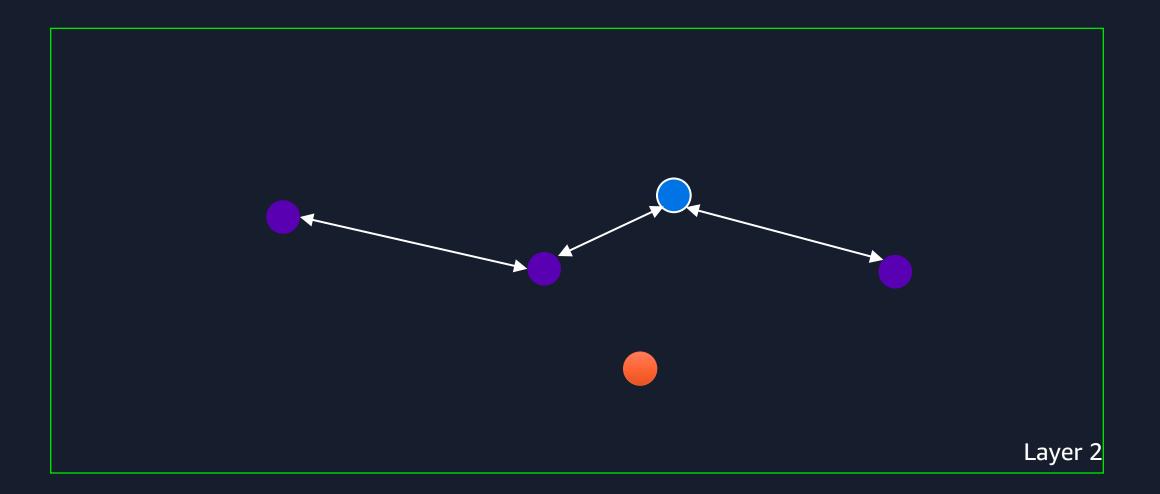
ef_construction

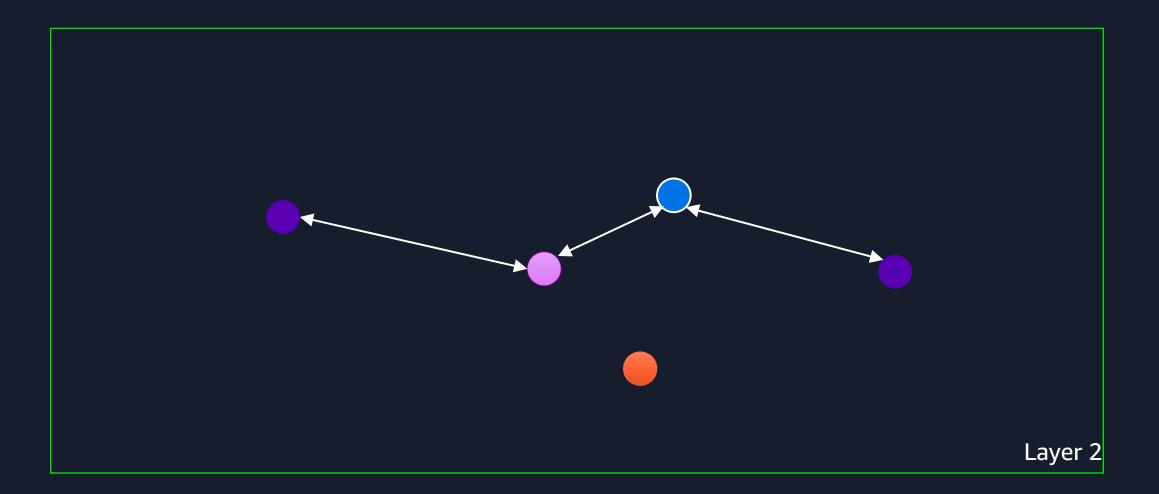
Number of vectors to maintain in "nearest neighbor" list Default: 64

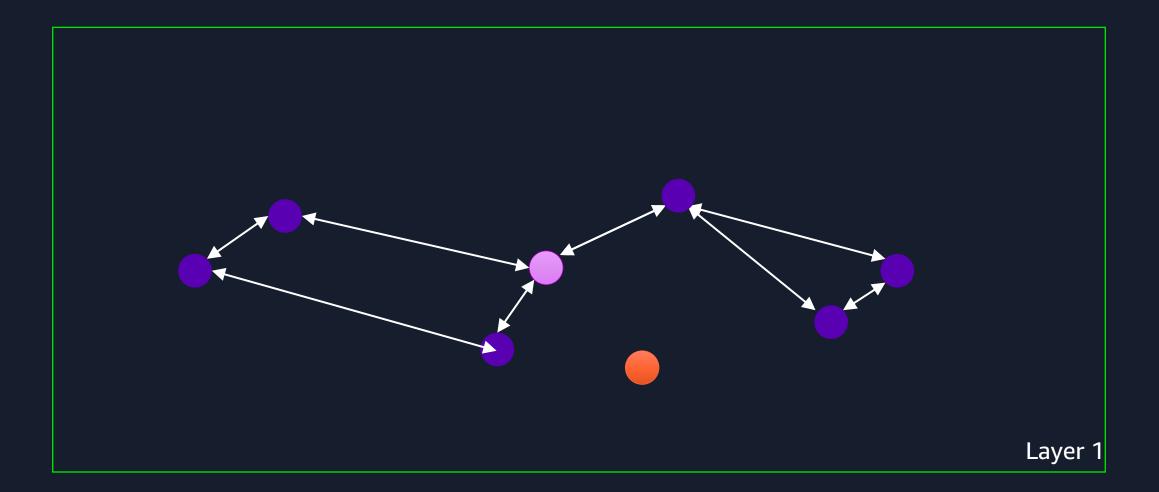
HNSW query parameters

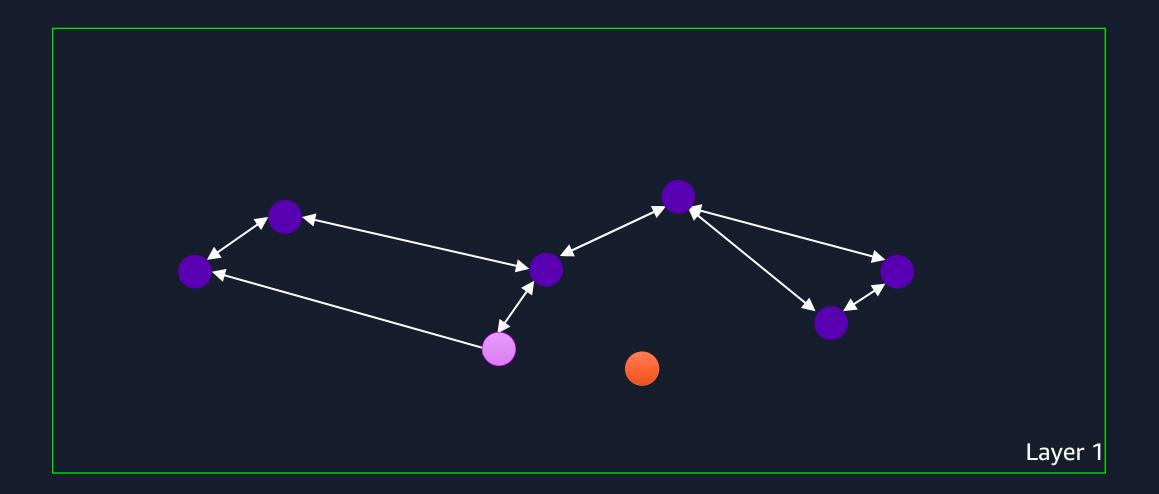
hnsw.ef_search

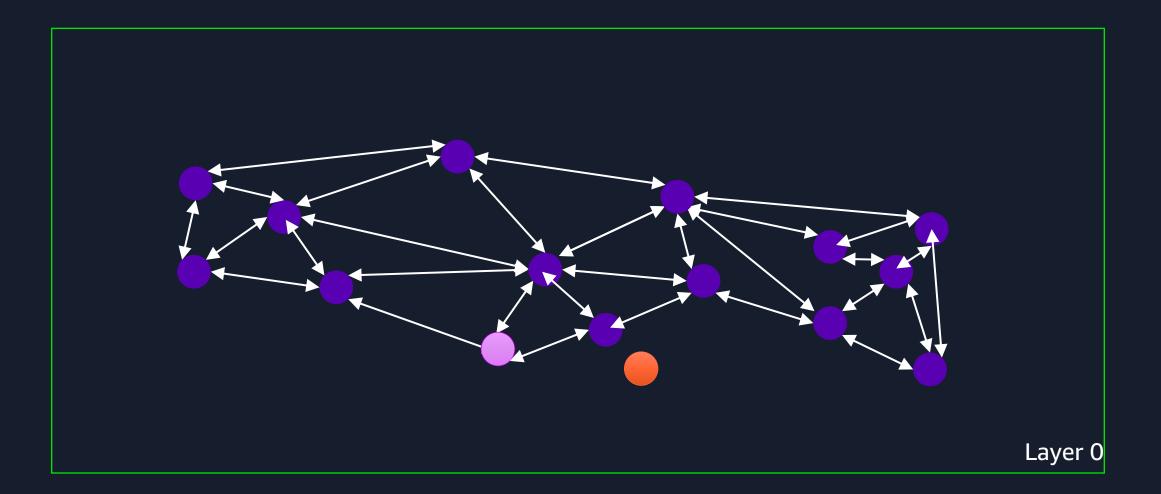
- Number of vectors to maintain in "nearest neighbor" list
- Before v0.8, must be greater than or equal to LIMIT
- v0.8+, can use hnsw.iterative_search to satisfy unmet LIMIT

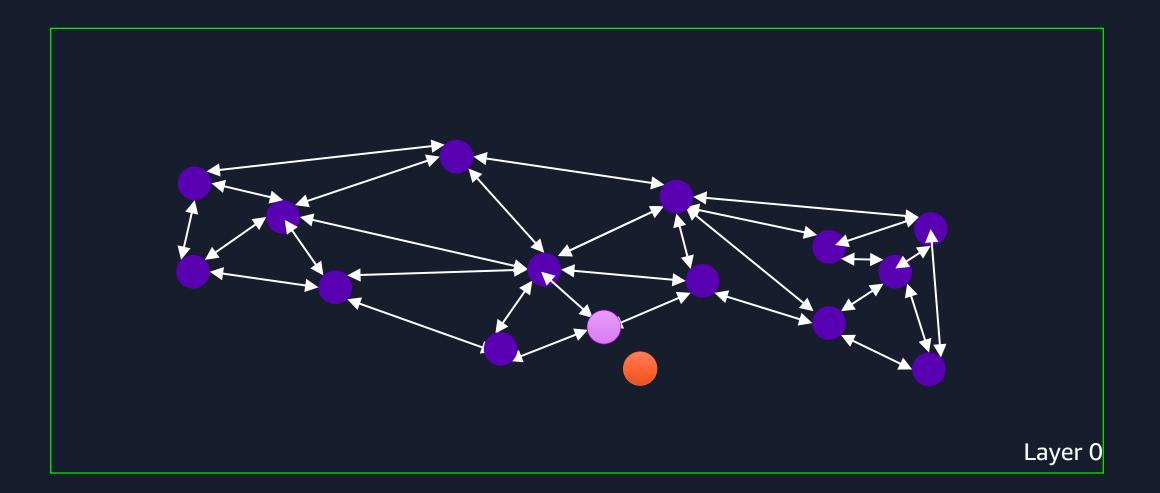






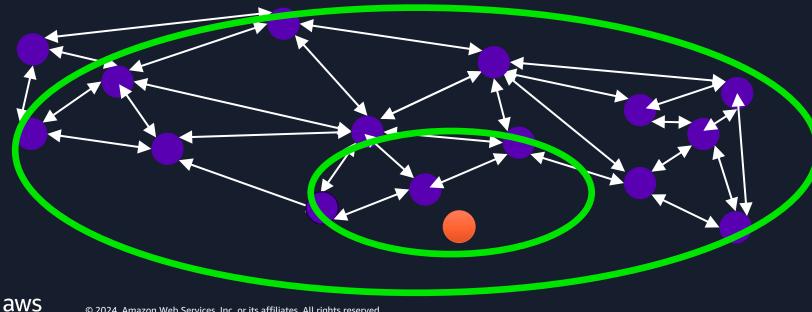






What happens when searching a HNSW index?

- Maintain a list of visited vectors (tuple IDs / TIDs) \bullet
- Maintain an ordered list of candidates with distances \bullet
- ef_search is 1 at Layer 1+
- ef_search is ef_search (default 40) at Layer 0

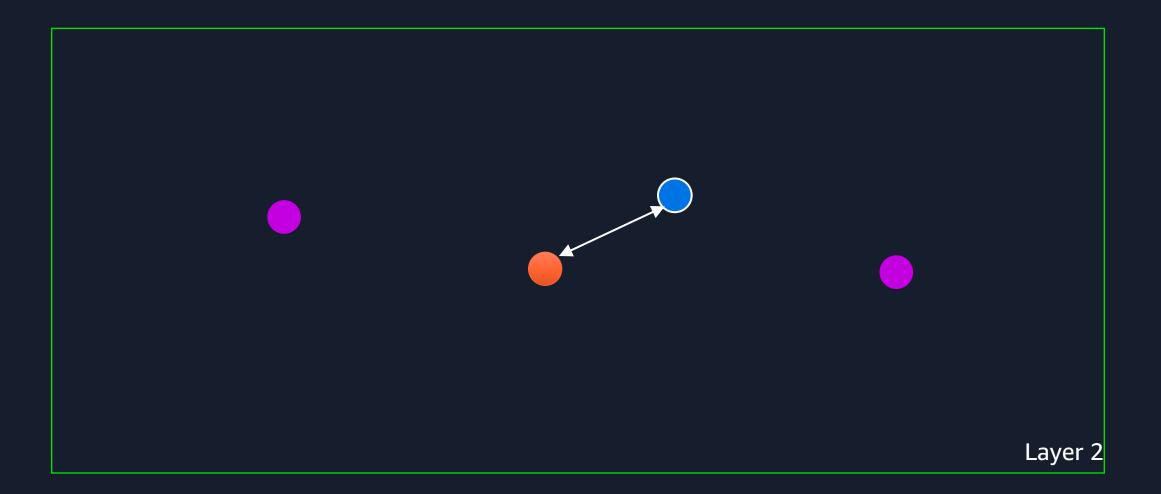


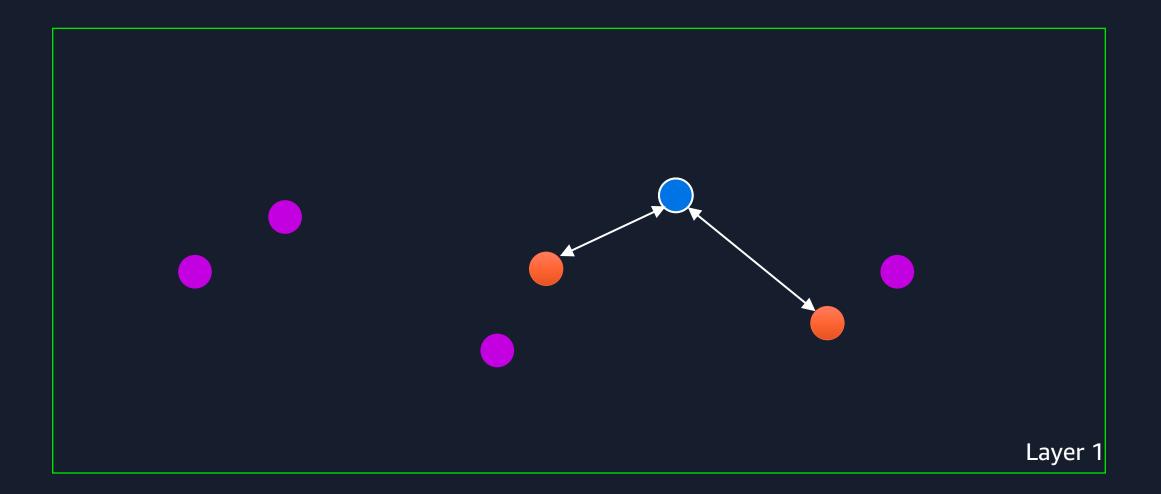
Visited

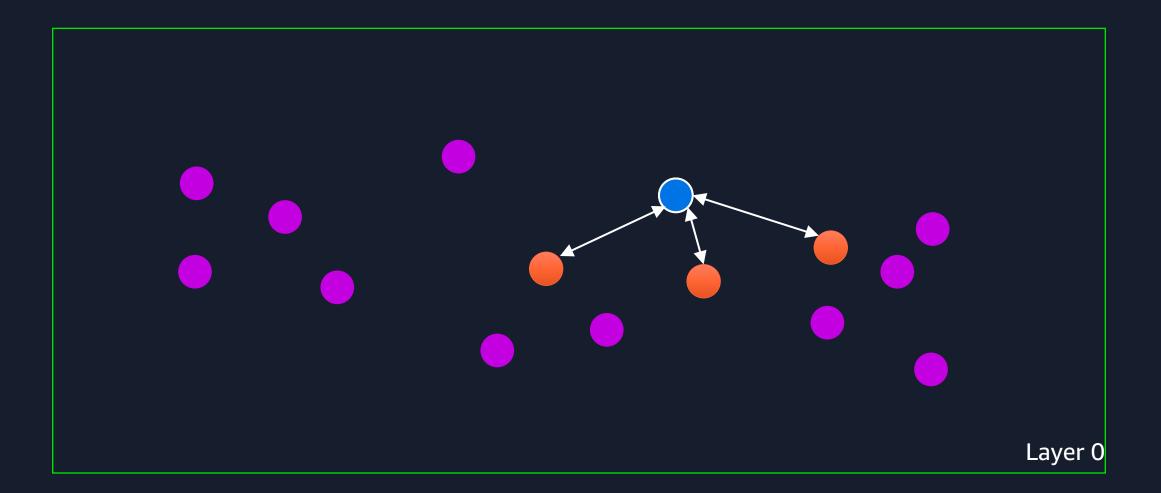
0x0102030405060708 0x0102030405060709 0x0102030405060710

Candidates	
0x0102030405060708	0.0123
0x0102030405060709	0.0434
0x0102030405060710	0.0845









- 1. Determine entry level
- 2. Determine insertion method ("in memory" or "on-disk")
- 3. Find neighbors (similar to querying)
 - Layer 0: m * 2
 - Otherwise: m
- 4. Add vector to graph
- 5. Update neighbors' bidirectional links

entryLevel = (int) (-log(RandomDouble()) * ml);

HNSW entry level distribution

m	Layer 0 Entry Level	Layer 1 Entry Level
2	50%	25%
4	75%	19%
8	87%	11%
12	92%	8%
16	94%	6%
20	95%	5%
24	96%	4%
32	97%	3%
36	97%	3%
48	98%	2%
64	98%	2%

How "m" impacts index build time & search quality

GIST960 1M 960-dim vectors, ef_construction=256, hnsw.ef_search=20, max_parallel_maintenance_workers=63

How "m" impacts query time via tuples scanned

	m=16, ef_construction=64							
			#	tuples scanned				
ef		SIFT (N=1M)	GIST (N=1M)	GLoVE25 (N=1.1M)	1536d (N=5M)	768d (N=10M)		
	10	427	512	438	456	498		
	20	643	779	652	650	695		
	40	1044	1272	1049	1005	1050		
	80	1774	2212	1761	1629	1762		
	120	2438	3099	2420	2214	2449		
	200	3638	4755	3629	3328	3833		
	400	6247	8402	6303	5836	7190		
	800	10619	14706	10938	10563	13258		

How "m" impacts query time via tuples scanned

	1536d	1536d	768d	768d
ef	(N=5M,m=16)	(N=5M,m=64)	(N=10M,m=16)	(N=10M,m=64)
10	456	605	498	1425
20	650	1257	695	2038
40	1005	2292	1050	3246
80	1629	4049	1762	5691
120	2214	5728	2449	8046
200	3328	8601	3833	12664
400	5836	15158	7190	23284
800	10563	27249	13258	42200

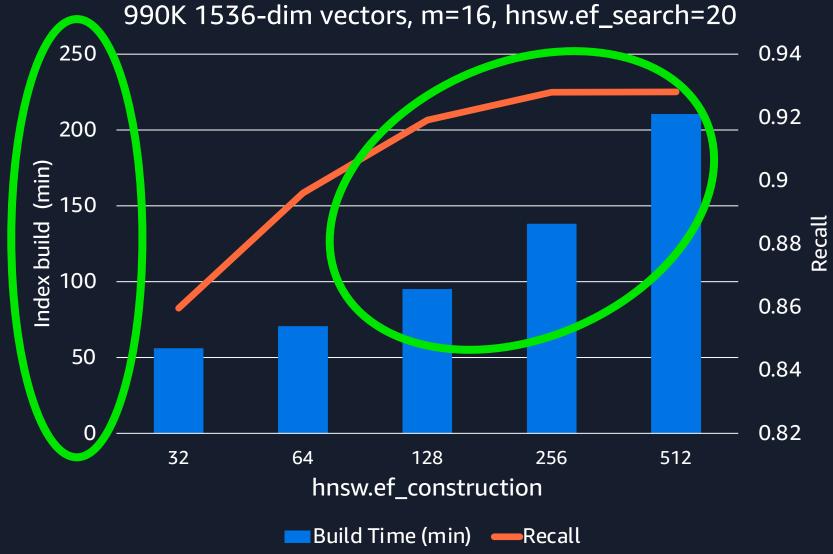
HNSW scan cost estimation

```
/*
* HNSW cost estimation follows <u>a formula</u> that accounts for the total
* number of taples indexed combined with the parameters that most
 Influence the duration of the index scan, namely: m - the number of
* tuples that are scanned in each step of the HNSW graph traversal
* ef_search - which influences the total number of steps taken at layer <u>0</u>
*
* The source of the vector data can impact now many steps it takes to
* converge on the set of vectors to return to the executor. Currently, we
* use a hardcoded scaling factor (HNSWScanScalingFactor) to help
* influence that, but this could later become a configurable parameter
* based on the cost estimations.
*
* The tuple colimator formula is below:
* numIndexTuples = entryLevel * m + layerOTuplesMax * layerOSelectivity
* /
```

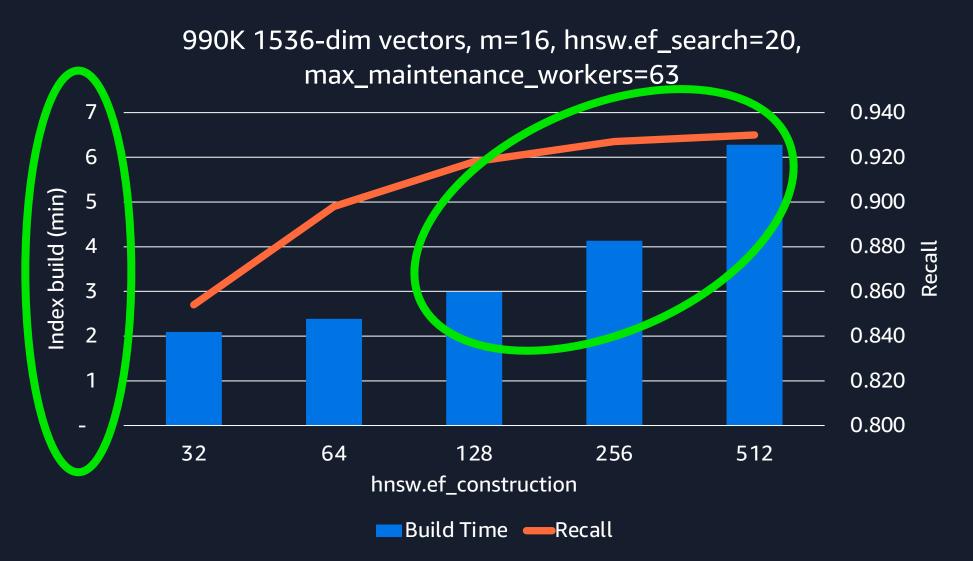
Why is cost estimation important?

- Guides PostgreSQL query planner to select "best path"
- Filtering (WHERE clause)
 - A different index (B-tree) or a sequential scan may be a better choice based on selectivity

Why index build speed matters (serial build)

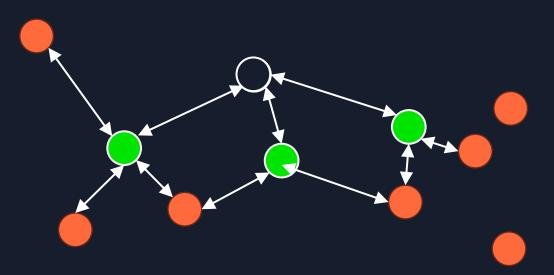


Why index build speed matters (parallel build)



pgvector and HNSW index maintenance

• Innovation: pgvector HNSW implementation supports updates and deletes



Phase 2: Riepeair

HNSW considerations

- Embedding model impacts overall query time
- Filtering
 - Iterative scans vs. using other search methods
 - Bitmap scans(?)
- Opportunities to accelerate time spent in Layer 0
- Opportunities
 - Streaming I/O
 - Parallel vacuum
 - "Smart" graph repair to improve clustering

What is quantization?

Flat

[0.0435122, -0.2304432, -0.4521324, 0.98652234, -0.1123234, 0.75401234]

Scalar quantization (2-byte float)

[0.0432, -0.234, -0.452,0.986, -0.112, 0.751]

Scalar quantization (1-byte uint) [129, 99, 67, 244, 126, 230]

Binary quantization [1, 0, 0, 1, 0, 1]

pgvector and scalar quantization (2 byte)

CREATE INDEX ON documents USING
hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id
FROM documents
ORDER BY embedding::halfvec(3072) <=> \$1::halfvec(3072)
LIMIT 10;

pgvector and binary quantization

CREATE INDEX ON documents USING
hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

```
SELECT i.id FROM (
    SELECT id, embedding <=> $1 AS distance
    FROM items
    ORDER BY
        binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)
    LIMIT 40 -- set to hnsw.ef_search
) i
ORDER BY i.distance
LIMIT 10;
```

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)			
Flat 2-byte float Bina		Binary (rerank)	
Index Size (GB)	38.15	19.07	2.34
Index build time (min)	21	13	4
Recall @ ef_search = 40	0.931	0.929	0.811
QPS @ ef_search = 40	24,216	27,084	33,984
Recall @ ef_search = 80	0.965	0.961	0.900
QPS @ ef_search = 80	11,057	12,759	20,410
Recall @ ef_search = 220	0.989	0.983	0.963
QPS @ ef_search = 220	5,242	5,983	7,856

_	

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)				
	Flat	2-byte float	Binary (rerank)	
Index Size (GB)	38.15	19.07	2.34	
Index build time (min)	21	13	4	
Recall @ ef_search = 40	0.931	0.929	0.811	
QPS @ ef_search = 40	24,216	27,084	33,984	
Recall @ ef_search = 80	0.965	0.961	0.900	
QPS @ ef_search = 80	11,057	12,759	20,410	
Recall @ ef_search = 220	0.989	0.983	0.963	
QPS @ ef_search = 220	5,242	5,983	7,856	

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)			
	Flat	2-byte float	Binary (rerank)
Index Size (GB)	38.15	19.07	2.34
Index build time (min)	21	13	4
Recall @ ef_search = 40	0.931	0.929	0.811
QPS @ ef_search = 40	24,216	27,084	33,984
Recall @ ef_search = 80	0.965	0.961	0.900
QPS @ ef_search = 80	11,057	12,759	20,410
Recall @ ef_search = 220	0.989	0.983	0.963
QPS @ ef_search = 220	5,242	5,983	7,856

aws

 \longleftrightarrow

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)				
	Flat	2-byte float	Binary (rerank)	
Index Size (GB)	38.15	19.07	2.34	
Index build time (min)	21	13	4	
Recall @ ef_search = 40	0.931	0.929	0.811	
QPS @ ef_search = 40	24,216	27,084	33,984	
Recall @ ef_search = 80	0.965	0.961	0.900	
QPS @ ef_search = 80	11,057	12,759	20,410	
Recall @ ef_search = 220	0.989	0.983	0.963	
QPS @ ef_search = 220	5,242	5,983	7,856	

 \leftarrow

Ongoing work

Areas to further explore

• "Multi-column" vector indexes

- Efficient batch queries
- Recall boosting techniques (statistical binary quantization, hybrid search)
- Demonstrably improved algorithms

• Upstream PostgreSQL changes that help vector search patterns

Conclusion

- What works in memory may or may not work with storage-based systems
- Extensible framework of PostgreSQL simplifies adding new search systems
 - "You have vector search...and every other PostgreSQL feature"
- Rapidly evolving space, including open areas of research (e.g., filtering)

Thank you!

Jonathan Katz jkatz@amazon.com

@jkatz05

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

