
From VMs to Cloud-Native
PostgreSQL in Kubernetes

A Case Study of Migrating a
Medium-Sized Application

2024 David Pech

About Me

David Pech

B2B E-commerce Application

- 4 different projects with the same codebase
- Already containerized
- Legacy PHP7, Java for ETL and API endpoints
- Kafka (CSV to event-driven ETL in-progress)
- MongoDB, Redis

- App uses primary for 95% of queries
- Recalculate multiple times a day 15M prices + fluctuating stock levels
- Benefits based on customer order history
- >several 100M EUR annual turnover

B2B E-commerce Application

- 50 regular - 80 peak req/s for backend / project

attacks / scans - up to 200 peak req/s, doubles before X-mas

- 2.000 regular - peak 5.000 TPS / project

heavy caching

Organizational Context

- 0 Full-Time Postgres DBAs (although 3 Oracle ones)
- Application itself already migrated to K8s with success
- Client willing to invest and open to innovation

- But running costs cheap as possible
- (No strict SLOs)

- Unfriendly transfer of ownership from contractor
- Kubernetes adoption
- Zabbix => Prometheus migration for monitoring

Initial Postgres Setup

- OLTP 4 DBs around 70 GB each
- Traffic split: 50%, 25%, 13%, 12%
- Mixed workload of regular traffic + batch data-loading
- Ubuntu 20.04 LTS, PG13 - Version practically frozen
- no proxy / pooler
- OnPrem VmWare VMs
- Networking - directly to primary (controlled via SaltStack /etc/hosts)
- DR plan - manual, never tested on PROD
- Backups - custom pg_basebackup Bash to barman -> S3
- Worthy mentions: pgpool-II dropped

My Starting Point

Patroni experience:

- corrupted DB with my 1st switch-over (!)

- operating 10 DBs, internal tooling mostly
- non-trivial setup, etcd ops painful
- networking to primary

… I've never fully trusted Patroni (but probably
not Patroni's problem).

Kubernetes

- operating 8 cluster OnPrem + 6 Oracle
Kubernetes Engine

- Kubestronaut

Kubernetes-operators

- Bitnami chart - single instance - no-PROD
- operating 4 DBs with Zalando operator
- operating 20 DBs with CloudNative PG

Storage for K8s

- Oracle Cloud storage
- Rook/CephFS OnPrem storage

Client Motivation

- Client willing to advance technically & Good relations
- Good track record with K8s app migration (CI pipelines, ArgoCD)

- Advocating: general upgrade, H-A, logical long-term next step
- … yet at the same time being not too critical to current setup
- Several L1 incidents in few years, none related to Postgres (typically VmWare infra)

- possible improvement with migration

=> "no big deal" from client's perspective

Client sees Kubernetes as "I can move the project to different hosting anytime".

Our Motivation

- Gradual Kubernetes adoption - stateful is next logical step
- We are not Postgres experts
- Current solution is obsolete, brings risks
- Number of services, number of users, data - grows over time

- Let's get the work done in the most reliable and stable way

Managed Postgres vs. Patroni vs. Kubernetes-operator

Operator Research

Long story: Zalando operator, PGO, StackGres, CloudNativePG

Short story: CloudNativePG (EDB)

- Docs ++
- Enterprise-ready
- (Mature?)

CloudNativePG (CNPG) vs. Patroni

- etcd already in K8s
- can leverage K8s nodes
- can leverage GitOps (ArgoCD)
- barman (backups)

- new tool for difficult and complex task

- basic operations can be passed to devs

- etcd operating
- need Ansible / Puppet / X node boostrap
- manual installation / first setup
- barman (backups)

- standard, proven track record (!)

Controlling the DB cluster

Regular operations

- operate via CustomResourceDefinition (CRD = YAML)
- Specify users, dbs
- Bootstrapping options
- …
- Change -> Edit YAML -> Operator propagates the change

- Grafana dashboard - observability

DBA

- k9s (like 'mc' for K8s)
- kubectl cnpg status
- kubectl cnpg promote

- (psql as a last option) kubectl cnpg psql (--replica)

Insights for Developers using ArgoCD

Verify Operator Quality

- Reliability (Chaos) testing using Litmus + Bash

Myth - Containers Are Ephemeral

Containers == Unix process with constraints

Myth - Containers Are Less Performant

Prague PostgreSQL Developer Day (p2d2.cz) 2024 dialog:

"Are you considering some POC in Kubernetes?"

One of the most senior Czech PG DBAs:

"In order to run Postgres in a container, I would probably first need to
'decontantainerize it'."

Myth - Containers Are Less Performant

(Same argument was against cloud, right?)

Just untrue. Having hands-on experience needed.

Local volumes in Kubernetes = Game changer.

G. Bartolini: Local Persistent Volumes and PostgreSQL usage in Kubernetes

https://www.2ndquadrant.com/en/blog/local-persistent-volumes-and-postgresql-usage-in-kubernetes/

Myth - Kubernetes Can Easily Lose Data

Persistent Volumes (PVs) have .metadata.finalizers[]

- must be explicitly removed
- (but PVs are just YAML representation of real data somewhere)

BUT default StorageClass reclaim policy: Delete (vs. Retain)

Myth - Container Will Lose All Changes on Restart

Well, of course!

- You don't have root inside container
- Current trend: read-only root FS
- You don't use 'kubectl exec' (ssh to container)
- Container restarts with PID 1 kill

=> Design your container, Deployments etc. so they contain everything

Myth - Kubernetes Can Kill My Pod Anytime

- Well defined order of "victim selection" (preemption, PriorityClass)

- Simple rule: .resources.limits == .resources.requests

(Will make container the highest priority in "standard cluster")

- Problem:
- .resources.requests: { cpu: 1.0, memory: 1Gi }
- .resources.limits: { cpu: 2.0, memory: 2Gi }

(Pod might be placed to node with only 1-2Gi of free memory -> OOMKilled)

Myth - Kubernetes Needs Constant Upgrades and Breaks

- Upgrade breaking changes - significantly matured, last 2 years minimal
disruptions

- API maturity level + commitment
- (Tooling around)

- No LTS, 3 version per year, 3 most recent version supported
- (Yes, you need to should upgrade at least once a year)

Myth - Database in K8s is a Niche Idea

- Data on Kubernetes community (DoK), 2021 report
In September 2021, we surveyed over 500 Kubernetes users to understand the types and volume of data-intensive
workloads being deployed in Kubernetes, benefits and challenges, and the factors driving further adoption.

…
Kubernetes has become a core part of IT – half of the respondents are running 50% or more of their production
workloads on it, and they are very satisfied and more productive as a result. The most advanced users report 2x or
greater productivity gains.

90% believe it is ready for stateful workloads, and a large majority (70%) are running them in production with
databases topping the list. Companies report significant benefits to standardization, consistency, and management as
key drivers.

Note: Nobody suggests to run 100% of your workloads in Kubernetes.

https://dok.community/dokc-2021-report/

Migration Approach

- Planning
- Verify & tune solution (UAT)
- Near-zero migration on PROD
- Reliability testing

Plan: On-Prem Block Storage

- External (VmWare, Proxmox provisioner) - take it if available

- hostPath PVs
- local-path-provisioner
- Rook/Ceph - need expert know-how

- Possibly beneficial for reads
- Hard to setup and learn
- Difficult to estimate or evaluate performance under load

Note: can be also static - provision PVs up-front.

Plan: On-Prem Networking

- In-cluster only, or exposed outside Kubernetes cluster?
- External HW LoadBalancers - take them if available

- kube-vip - VirtualIP
- MetalLB
- NodePort
- (not required when sharing cluster with apps)

- CNI - Cillium

Plan: Pgbouncer or not?

- max_connections = 400, used around 100
- We don't need it prior to migration
- Another layer of complexity
- PHP uses permanent connection under the hood (pg_pconnect) + fixed sizes

of PHP-FPM pools
- Apps use kind:Service directly in-cluster

Plan: Kubernetes (K8s) Cluster

- Managed Service - take it
- (Managed Control plane-only SaaS also available)

- Standalone cluster for DBs (prefered)
- +3 VMs for control-plane
- separated blast radius
- more management + networking

- Shared with apps
- at least use .nodeSelector and separate on Node level (noisy neighbours)
- don't mix apps with DBs on the same node

Plan: Node-Pod considerations - VM setup

Plan: Node-Pod considerations

- Our approach: (Traffic split: 50%, 25%, 13%, 12%)
- 1 primary+2 replicas? or 1 replica?
- Smaller (single DB Pod) or larger nodes?

Note: we had several incidents on storage

infra layer - more replicas won't help.

Plan: Node-Pod Affinity

(If possible) schedule Pod to Node that does not contain other Pod like this.

Also considered:

- Any other DB cluster
- cnpg.io/instanceRole: primary

Plan: Node-Pod considerations

- Noisy neighbours conderations
- Bottom line - in an emergency - 2 DBs must share a node
- Considered also separate cluster of "smaller replicas"
- Automatic failover mindset change
- Is it better to use same node and pod sizes, or should we "save $$$"?

- Great CNPG docs on architectural consideration
- Best-in-class: Shared-nothing architecture

Plan: Disaster Recovery & Backup

- We don't trust OnPrem infra -> barman backup and WAL archive to S3
- <100GB quite easy to download, off-site backup
- DR in cloud from scratch (Terraform managed cluster, GitOps drop-in YAMLs,

restore from S3, tested < 40 min) - client needs several hours for decision

Note larger DBs or better hosting: CSI snapshotting

Tuning

Temp tablespace to a separate partition

(use local scratch disks)

CPU to HW core allocation (kubelet --cpu-manager-policy)

Resource Limits - short story: don't overprovision on PROD

Storage - same logic as for regular VMs

Tuning Postgres

- Shared memory mount
- Direct access to most of GUCs

- Preloaded libs - auto_explain, pg_stat_statements, pgaudit, pg_failover_slots
- pg_repack - requires custom image

- ALTER SYSTEM - limited and discouraged
- Mostly similar to Patroni

Timescale DB, PostGIS, … - possible

Other extensions also possible via custom PG image

Understanding Pod Memory Usage

- 2 "schools of Postgres Memory Management"
- around 25 % of RAM to shared-buffers, let OS handle FS
- around 80 % of RAM to shared buffers

- VM:

- Containers:

Verify: Benchmarking

This can't be easier…

Near Zero Downtime Migration

VMs (PG13) -> CNPG (PG16)

- Create empty cluster
- Setup logical replication
- Cutover

G. Bartolini: CloudNativePG Recipe 5 - How to migrate your PostgreSQL
database in Kubernetes with ~0 downtime from anywhere

Alternative: Upgrade In-Place and Restore Backup

Upgrade VMs in-place (PG13 -> PG16)

Provision new PROD cluster from backups

Use S3 WAL archive

Around 2 hour of downtime

(Same PG version required)

Operator Misbehaving / Break the Glass Scenario

Fencing - marking PG node or cluster - Postgres will remain disabled, Pod runs

(Not enough for us, Hibernation is too much) - Attach Pod to same PVC - as root

Break the Glass Scenario - Trust the Operator

Let's think about full-autopilot

- SW Bug -> CrashLoopBackOff, verify on UAT
- Postgres
- Kubernetes
- CloudNativePG

- Failover / Switchover, split Brain
- There are >1 endpoints to kind:Service
- (Note edge cases - up to 10s can Pod receive traffic after Endpoint had changed)

- Reprovision new PG node - around 20 mins on 1Gbit network

Currently still manual:

- Password, TLS cert rotation

Horror Stories on PROD

…

nothing here

Just works™

Expected Problems

- Out of disk space -> PVC resize
- May switch-over depending on the CSI

- Pod restart -> reliability testing
- Node goes down -> reliability testing
- Control Plane goes down (no problems)
- Networking disruptions
- Data corruption -> reliability testing (backups)
- Query Performance problems -> pg_stat_statements

Comparing Before and After

Before:

- Uneven VM sizes (6x)
- 1 manually managed VM per DB
- Ad-hoc managed CPU+RAM

- DR fully manual, never verified
- Backup operations planed in-place
- No updates
- Root access to Devs on VMs

After:

- same Nodes (4x)
- 2-4 DBs per uniform Kubernetes Node
- Large vs Small (½ Large) - 2x increased

CPU+RAM for Nodes in total

- Automatic failover
- Backup can be easily bootstrapped next to

running PROD, verified and discarded
- Periodic minor version updates
- Pod level access and better insights for

Devs

Resume

- K8s nodes easier to maintain to VMs
- Devs basic insight to PG clusters
- GitOps for DB

- Surprisingly easy to use
- Many DBA manual task in YAML instead

(not time-saving for the first time)

- Several months of research, verification

- Still niche tech (at least in CZ)
- We don't like being early adopters

Next Steps

- Offload more traffic on replicas
- Batch data load with locks -> event-driven Kafka
- Performance degradation mitigations

- (With more PROD experience) Offer SLOs to client

- More tooling around Cluster.status (Do we have a fresh backup, …)

It's Still Postgres….

Containers don't change how we should handle it.

We are hiring

Postgres
DBA and Cloud

Ops Engine
ers

Help us manage:
120 product clusters
top DBs 10 kQPS, average prime time load 4-6 kQPS
productuction dataset ~ 27TB (without backups and replicas)

Thank you!

