
A Deep Dive into Statistics
Louise Leinweber
PGConfEU2024

@louisemeta

About me

• Principal software engineer at
Crunchy Data

• Working on a managed Postgres
service: https://crunchybridge.com/

• Ruby, crystal, SQL, python are my
everyday languages

• louisemeta.com

• Used to like climbing but then had a
small human who takes time

• Also, used to like sleeping

https://crunchybridge.com/
http://louisemeta.com

@louisemeta

Today’s agenda

1. Looking at your statistics

2. Statistics gathered by default

3. How the query optimizer uses them

4. Why are single column statistics not enough

5. Extended statistics

6. Configuration

7. How statistics are gathered

8. Conclusion

@louisemeta

About the sample database

https://aact.ctti-clinicaltrials.org/

Database that includes all information (protocol, result data, conditions, etc.) for
every study registered in ClinicalTrials.gov.

ClinicalTrials.gov:
• Information about studies is gathered by investigator
• Clinical research studies and their results
• New studies added almost every day
• Studies in 50 states and over 200 countries

https://aact.ctti-clinicaltrials.org/

@louisemeta

Looking at your statistics

@louisemeta

pg_stats View
 schemaname name

 tablename name

 attname name

 inherited boolean

 null_frac real

 avg_width integer

 n_distinct real

 most_common_vals anyarray

 most_common_freqs real[]

 histogram_bounds anyarray

 correlation real

 most_common_elems anyarray

 most_common_elem_freqs real[]

 elem_count_histogram real[]

@louisemeta

pg_stats View
SELECT * FROM pg_stats WHERE tablename = 'outcome_analyses' AND attname = 'ci_percent';

schemaname ctgov

tablename outcome_analyses

attname ci_percent

most_common_values
{95.0,90.0,80.0,97.5,60.0,99.0,95.1,98.0,98.75,97.3}

most_common_freqs {0.6150333,0.06973334,0.0089,0.006733333,0.0013333333,0.0010666667,0.000
3,0.0003,0.0003,0.00026666667}

histogram_bounds {-42.88,0.0,0.0,0.769,0.7763,0.95,0.95,0.95,0.95,0.975,2.0,2.0,5.0,5.0,10.0,20.0,65.0,
85.0,90.46,92.0,92.83,95.001,95.003,95.03,95.47,95.6,95.8,95.8,95.9,95.9,95.9,…}

… …

@louisemeta

Statistics gathered by
default

@louisemeta

Statistics gathered

• Most common values

• Histogram

• Distinct values: estimation of the number of distinct values in the table

• Average datum width: calculated for types like text, json. Otherwise it’s the a
constant (int, uuid, etc)

• Fraction of null values

• Correlation: varies from -1 to 1. Describes the correlation between physical order
of your tuples and values order of this column.

@louisemeta

Most common values
Most common values are gathered from the table along with their distribution

schemaname ctgov

tablename conditions

attname name

most_common_vals
{Healthy,"Breast Cancer",Obesity,"Prostate Cancer",Depression,Hypertension,"HIV
Infections",Stroke,Pain,"Coronary Artery Disease",Asthma,Cancer,"Heart
Failure","Diabetes Mellitus, Type 2","Colorectal Cancer","Atrial Fibrillation”,…}

most_common_freqs

{0.0111,0.009666666,0.008366667,0.0048,0.0046666665,0.0046,0.0045333332,0.00
44333334,0.0042666667,0.0042333333,0.0041,0.004,0.0037666666,0.0036333334,0
.0034666667,0.0033666666,0.0033666666,0.0033333334,0.0031666667,0.0030333
332,0.003,0.0029333334,0.0029,0.0026,0.0026,0.0025333334,0.0025,0.0023666667,
0.0023333333,0.0023333333,0.0023,0.0022,0.0021666666,0.0020666667,0.0019666
667,0.0019333333,0.0019333333,0.0019,0.0019,…}

@louisemeta

Most common values

SELECT * FROM pg_stats WHERE tablename = 'studies' AND attname = 'study_type';

schemaname ctgov

tablename studies

attname study_type

…

n_distinct 3

most_common_vals {INTERVENTIONAL,OBSERVATIONAL,EXPANDED_ACCESS}

most_common_freqs {0.76283336,0.23366667,0.0017666667}

@louisemeta

Most common values

EXPLAIN ANALYZE SELECT COUNT(*) FROM conditions WHERE name = 'Healthy';
QUERY PLAN

 Aggregate (cost=20794.70..20794.71 rows=1 width=8) (actual
time=57.273..57.274 rows=1 loops=1)
 -> Seq Scan on conditions (cost=0.00..20768.99 rows=10283
width=0) (actual time=0.013..57.020 rows=10040 loops=1)
 Filter: ((name)::text = 'Healthy'::text)
 Rows Removed by Filter: 871319
 Planning Time: 0.030 ms
 Execution Time: 57.287 ms
(6 rows)

@louisemeta

Distribution histogram
• Histogram describes the data distribution outside of the most common values

• Evenly distributed buckets

• Histogram are not computed when all values are listed in the MCV

tablename baseline_counts

attname count

histogram_bounds

{77,85,92,93,101,103,106,107,109,111,112,115,117,119,121,123,125,128,130,132,134,137,139,14
2,145,148,151,153,156,159,161,164,166,170,174,176,180,184,189,193,197,200,202,206,210,
215,219,222,226,231,237,242,247,251,257,263,269,276,283,292,298,303,310,315,323,3
30,339,351,361,373,387,400,412,431,447,463,482,499,515,537,568,600,617,653,691,7
37,793,854,931,1012,1094,1214,1407,1571,1815,2235,2972,4107,6949,15044,985424}

@louisemeta

Distribution histogram
WITH
histogram AS (

SELECT
most_common_vals::text::int[],
unnest(histogram_bounds::text::int[]) as value,
generate_series(1, array_length(histogram_bounds, 1)) as id

FROM pg_stats
WHERE
attname = 'count' AND tablename = 'baseline_counts'

),
bounds AS (

SELECT
h1.most_common_vals,
h1.value as min,
h2.value as max

FROM histogram h1
LEFT OUTER JOIN histogram h2 ON (h2.id = h1.id +1)

)
SELECT min, max, count(bc.*) as nb_rows, count(bc.*)/193212 AS percent
FROM bounds
LEFT JOIN baseline_counts bc ON bc.count BETWEEN min AND COALESCE(max, 2738162)
WHERE NOT (bc.count = ANY (most_common_vals))
GROUP BY(min, max)
ORDER BY min;

@louisemeta

Distribution histogram

0

300

600

900

1200

77 92 101 106 109 112 117 121 125 130 134 139 145 151 156 161 166 174 180 189 197 202 210 219 226 237 247 257 269 283 298 310 323 339 361 387 412 447 482 515 568 617 691 793 931 1094 1407 1815 2972 6949

1173
Maximum

423
Minimum

Number of actual rows in the histogram range

@louisemeta

Distribution histogram

0.000

0.175

0.350

0.525

0.700

77 93 106 111 117 123 130 137 145 153 161 170 180 193 202 215 226 242 257 276 298 315 339 373 412 463 515 600 691 854 1094 1571 2972 15044

0.219
Minimum

0.607
Maximum

Percentage of the range

@louisemeta

Distribution histogram

EXPLAIN ANALYZE SELECT COUNT(*) FROM baseline_counts WHERE count = 78;
QUERY PLAN

--
 Aggregate (cost=4542.72..4542.73 rows=1 width=8) (actual
time=33.057..33.058 rows=1 loops=1)
 -> Seq Scan on baseline_counts (cost=0.00..4541.55 rows=468
width=0) (actual time=2.109..33.011 rows=504 loops=1)
 Filter: (count = 78)
 Rows Removed by Filter: 197060
 Planning Time: 0.153 ms
 Execution Time: 33.098 ms
(6 rows)

@louisemeta

Distribution histogram
A weird one

SELECT * FROM pg_stats WHERE tablename = 'outcome_analyses' AND attname = 'ci_percent';

schemaname ctgov

tablename outcome_analyses

attname ci_percent

… …

histogram_bounds {-42.88,0.0,0.0,0.769,0.7763,0.95,0.95,0.95,0.95,0.975,2.0,2.0,5.0,5.0,10.0,20.0,65.0
,85.0,90.46,92.0,92.83,95.001,95.003,95.03,95.47,95.6,95.8,95.8,95.9,95.9,95.9,…}

@louisemeta

Distribution histogram
A confidence of -43% is not good.

Here’s the study ClinicalTrials.gov ID that it’s linked to: NCT01078675.

An Efficacy and 2-Year Safety Study of Open-label Rosuvastatin in Children and
Adolescents (Aged From 6 to Less Than 18 Years) With Familial
Hypercholesterolaemia

Conclusion: humans make mistakes.

http://ClinicalTrials.gov

@louisemeta

How the query optimizer
uses statistics

@louisemeta

What are statistics for?

When you run a query, postgres generates different paths to execute the query.
It will pick the best one based on cost, and use it for the query plan.

Based on statistics, we estimate:

• Number of rows returned

• Size of the data returned

• Number of pages to scan

@louisemeta

About selectivity

• Selectivity = % of rows returned after applying a filter.

• Estimated based on MCV, histogram, null fraction, etc.

• Helps choose a query plan.

• If a where clause is filtering most rows, an index scan makes more sense

• If a where clause is returning most rows, a sequential scan is preferred

@louisemeta

Algorithms we’ll look at today

src/backend/utils/adt/selfuncs.c:
• Calculating the selectivity of a WHERE column = constant

• Calculating the selectivity of a WHERE column (<,>,<=,>=) constant

src/backend/optimizer/path/clausesel.c
• Combining clauses with AND

src/backend/optimizer/path/costsize.c
• From selectivity to rows

@louisemeta

The = clause

• The value is in the MCV: we have the exact selectivity in stat numbers.

• The value isn’t in the MCV

The selectivity is initialized with: 1 - (sum of MCV frequencies) - nullfrac

Calculate number of distinct values outside of the MCV

The selectivity then is: selectivity / other distincts.

This assumes the values outside of the MCV, are evenly distributed.

var_eq_const

@louisemeta

The = clause

SELECT * FROM facilities WHERE city = ‘Boston’;

Here are the stats on this column:

most_common_vals | {"New York”,Seoul,Houston,Boston,…}
most_common_freqs | {0.009933333,0.0088,0.008366667,0.008333334,…}

The selectivity will be 0.008333334

Examples: value in MCV

@louisemeta

The = clause

• The value is in the MCV: we have the exact selectivity in stat numbers.

• The value isn’t in the MCV

The selectivity is initialized with: 1 - (sum of MCV frequencies) - nullfrac

Calculate number of distinct values outside of the MCV

The selectivity then is: selectivity / other distincts.

This assumes the values outside of the MCV, are evenly distributed.

var_eq_const

@louisemeta

The = clause

SELECT * FROM facilities
WHERE city = ‘Grenoble’;

Relevant statistics
null_frac | 6.666667e-05
n_distinct | 6655

Extra data we need to calculate selectivity:
SELECT
array_length(most_common_vals, 1),
(SELECT SUM(freqs) FROM
UNNEST(most_common_freqs) freqs)
FROM pg_stats WHERE attname =
'city';

array_length | 100
sum | 0.3193

selectivity = 1 - null_frac - (sum of MCV
frequencies)

selectivity = 1 - 6.666667e-05 - 0.319 = 0.681

other distincts = n_distinct - (number of MCV)

other_distincts = 6655 - 100 = 6555

selectivity = selectivity/other_distincts

selectivity = 0.681/6555 = 0.0001038

(So something like 0.01%)

Examples: value not in MCV

@louisemeta

The <, >, <=, >= operators

To be able to evaluate the selectivity of a where clause with one of these operators,
we’re going to look both at the MCV and at the histogram.

1. We retrieve the mcv_selectivity

2. We retrieve the histogram_selectivity

3. We combine these to get the selectivity

scalarineqsel

@louisemeta

The <, >, <=, >= operators
mcv_selectivity

1. Initialize the selectivity to 0

2. Loop through mcv values:

1. Try to apply the operator to the current value, if it matches, add it to the
selectivity

@louisemeta

The <, >, <=, >= operators
mcv_selectivity

SELECT * FROM outcome_analyses WHERE ci_percent >= 95;

Relevant statistics:

most_common_values
{95.0,90.0,80.0,97.5,60.0,99.0,95.1,98.0,98.75,97.3}

most_common_freqs {0.6150333,0.06973334,0.0089,0.006733333,0.0013333333,0.0010
666667,0.0003,0.0003,0.0003,0.00026666667}

Selectivity = 0.6150333 + 0.006733333 + 0.0010666667 + 0.0003 + 0.0003 + 0.0003 +
0.00026666667 = 0.62399996637 (around 62%)

@louisemeta

The <, >, <=, >= operators
Histogram selectivity

To calculate the selectivity of a histogram, we look for the buckets matching the
clause.

1. Initialize the number of match to 0

2. Loop through the histogram values

Try to apply the operator to the value, if it matches, increment the match by 1

3. Return the selectivity: match/number of buckets in the histogram

@louisemeta

The <, >, <=, >= operators
histogram_selectivity

match = 44

number of buckets = 64

selectivity = 44/64 = 0.6875

histogram_bounds

{-42.88,0.0,0.0,0.769,0.7763,0.95,0.95,0.95,0.95,0.975,2.0,2.0,5.0,5.0,
10.0,20.0,65.0,85.0,90.46,92.0,92.83,95.001,95.003,95.03,95.47,95.6,
95.8,95.8,95.9,95.9,95.9,96.0,96.0,96.39,96.7,97.0,97.0,97.4,97.47,97.4
7,97.51,97.6,98.25,98.25,98.3,98.3,98.33,98.33,98.34,98.4,98.4,98.6,9
8.77,99.1,99.1,99.2,99.4,99.5,99.6,99.7,99.8,99.8,99.8,99.875,985.0}

SELECT * FROM outcome_analyses WHERE ci_percent >= 95;

Relevant statistics:

@louisemeta

The <, >, <=, >= operators

We have

• The sum of MCV selectivities (sumcommon)

• The fraction of null values (nullfrac)

• The MCV selectivity

• The histogram selectivity

Calculating the selectivity

@louisemeta

The <, >, <=, >= operators

We’re going to use this to figure out what’s the selectivity, overall, for our clause.

1. Initialize selectivity:

selec = 1.0 - nullfrac - sumcommon:

2. Merge the histogram selectivity:

selec *= hist_selec

3. Merge the MCV selectivity:

selec += mcv_select

Reminder: we removed completely the MCV selectivities in the initialization,
which is why we add it back here.

Calculating the selectivity

@louisemeta

The <, >, <=, >= operators
Calculating the selectivity

SELECT * FROM outcome_analyses WHERE ci_percent >= 95;

• nullfrac = 0.292
• sumcommon = 0.704
• mcv_select = 0.624
• histogram_select = 0.6875

1. Initialize selectivity:

selec = 1.0 - nullfrac - sumcommon = 0.0037

Merge the histogram selectivity:

selec *= hist_selec = 0.0037 * 0.6875 = 0.00254

Merge the MCV selectivity:

selec += mcv_select = 0.00254 + 0.624 = 0.627

@louisemeta

Handling several clauses
(Queries with AND)

Function clauselist_selectivity in src/backend/optimizer/path/clausesel.c

• We start with a selectivity of 1 (all rows would be returned) (s1)

• Loop through clauses

Compute the selectivity of each clause in isolation (s2)

Merge it to our original selectivity s1 = s1 * s2

@louisemeta

Handling several clauses

Merging by multiplying means that out of the 8.5% of studies in phase 1, 2% have diabetes in their title.

EXPLAIN ANALYZE SELECT * FROM studies WHERE phase = 'PHASE1' AND brief_title
ILIKE '%diabetes%';

QUERY PLAN
--
 Seq Scan on studies (cost=0.00..43801.63 rows=434 width=1632) (actual
time=1.564..422.335 rows=616 loops=1)
 Filter: ((brief_title ~~* '%diabetes%'::text) AND ((phase)::text =
'PHASE1'::text))
 Rows Removed by Filter: 505441
 Planning Time: 0.150 ms
 Execution Time: 422.371 ms
(5 rows)

Queries with AND

@louisemeta

Handling several clauses
(Queries with AND)

Looking at function clauselist_selectivity in
src/backend/optimizer/path/clausesel.c

If your query has a range with a low and high
bound, we need to calculate the selectivity of
the overlap

s2 = rqlist->hibound + rqlist->lobound - (1.0 -
nullstats)

1 2 3 4 5 6 7 8 9 10

column < 8 AND column >=5

lobound = 0.7 hibound = 0.6
s2 = 0.7 + 0.6 - 1.0 = 0.3

@louisemeta

Handling several clauses
Example

SELECT nct_id,
official_title,
is_fda_regulated_drug
FROM studies
WHERE
completion_date > '2023-12-31'
AND completion_date < '2025-01-01'
AND study_type = 'INTERVENTIONAL';

Selectivity for:

study_type = ‘INTERVENTIONAL’: 0.76283336

completion_date > ‘2023-12-31’:

selec = (1.0 - 0.031366665 - 0.32790005) = 0.640733285

histogram_selectivity = 0.23

mcv_select = 0.0849668

select = 0.640733285 * 0.23 + 0.0849668 = 0.23233545555

completion_date< ‘2025-01-01':

selec = (1.0 - 0.031366665 - 0.32790005) = 0.640733285

histogram_selectivity = 0.85

mcv_select = 0.2787

select = 0.640733285 * 0.85 + 0.2787 = 0.82348989225

@louisemeta

Handling several clauses
Example

study_type = ‘INTERVENTIONAL’: 0.76283336

completion_date > ‘2023-12-31’: 0.23233545555

completion_date < ‘2025-01-01': 0.82348989225

Nullfrac: 0.031366665

Query selectivity = 0.76283336 * (0.23233545555 +
0.82348989225 - (1 - 0.031366665)) = 0.06651297609

SELECT nct_id,
official_title,
is_fda_regulated_drug
FROM studies
WHERE
completion_date > '2023-12-31'
AND completion_date < '2025-01-01'
AND study_type = 'INTERVENTIONAL';

@louisemeta

Calculation of cost

EXPLAIN SELECT nct_id, official_title, is_fda_regulated_drug
FROM studies
WHERE
completion_date > '2023-12-31'
AND completion_date < '2025-01-01'
AND study_type = 'INTERVENTIONAL';

QUERY PLAN

 Gather (cost=1000.00..44260.65 rows=33672 width=151)
 Workers Planned: 2
 -> Parallel Seq Scan on studies (cost=0.00..39899.35 rows=14005 width=151)
 Filter: ((completion_date > '2023-12-31'::date) AND (completion_date <
'2025-01-01'::date) AND ((study_type)::text = 'INTERVENTIONAL'::text))
(4 rows)

Number of rows

@louisemeta

Calculation of cost

 rows=33672

SELECT reltuples AS estimate FROM pg_class WHERE relname =
'studies';
estimate

506242

rows = selectivity * reltuples = 0.06651297609 * 506242 = 33671.6620417538

Number of rows

@louisemeta

Calculation of cost

Query plan for EXPLAIN ANALYZE:

QUERY PLAN
--
 Gather (cost=1000.00..44260.65 rows=33672 width=151) (actual time=1.688..351.477
rows=32686 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Seq Scan on studies (cost=0.00..39899.35 rows=14005 width=151) (actual
time=0.486..344.455 rows=10895 loops=3)
 Filter: ((completion_date > '2023-12-31'::date) AND (completion_date <
'2025-01-01'::date) AND ((study_type)::text = 'INTERVENTIONAL'::text))
 Rows Removed by Filter: 157790
 Planning Time: 0.055 ms
 Execution Time: 352.224 ms
(8 rows)

Number of rows

@louisemeta

Calculation of cost

If you want to know more about costs:

src/backend/optimizer/path/costsize.c

@louisemeta

Why are single column
statistics not enough

@louisemeta

Combination of selectivity

EXPLAIN SELECT nct_id, name FROM facilities WHERE city = 'Lyon' AND country =
'France';

QUERY PLAN

 Index Scan using index_facilities_on_city on facilities (cost=0.43..24535.07
rows=297 width=47)
 Index Cond: ((city)::text = 'Lyon'::text)
 Filter: ((country)::text = 'France'::text)

@louisemeta

Combination of selectivity

rows=297

Selectivity France: 0.060533334 (6%)

Selectivity Lyon: 0.0015666666 (0.16%)

Reltuples: 3132540

The selectivity is combined by assuming that out of the 0.16% of cities named
Lyon, only 6% will be in France.

3132540 * 0.060533334 * 0.0015666666 = 297

@louisemeta

EXPLAIN ANALYZE

EXPLAIN ANALYZE SELECT nct_id, name FROM facilities WHERE city =
'Lyon' AND country = 'France';

QUERY PLAN

--
 Index Scan using index_facilities_on_city on facilities
(cost=0.43..24535.07 rows=297 width=47) (actual
time=0.072..6.770 rows=5605 loops=1)
 Index Cond: ((city)::text = 'Lyon'::text)
 Filter: ((country)::text = 'France'::text)
 Planning Time: 0.206 ms
 Execution Time: 7.090 ms

@louisemeta

EXPLAIN ANALYZE

The expected and actual number of rows are widely different

(cost=0.43..1172.06 rows=297 width=47) (actual time=2.248..84.619
rows=5605 loops=1)

The issue is that, potentially, it’s choosing the wrong query
plan!

@louisemeta

EXPLAIN ANALYZE

CREATE STATISTICS (dependencies) ON country, city FROM facilities;
ANALYZE facilities;

EXPLAIN ANALYZE SELECT nct_id, name FROM facilities WHERE city = 'Lyon' AND
country = 'France';

QUERY PLAN
--
 Index Scan using index_facilities_on_city on facilities (cost=0.43..24146.29
rows=5747 width=47) (actual time=0.050..5.021 rows=5605 loops=1)
 Index Cond: ((city)::text = 'Lyon'::text)
 Filter: ((country)::text = 'France'::text)
 Planning Time: 0.151 ms

@louisemeta

Types of multicolumn
statistics

@louisemeta

Spooky query
create or replace function mycountingthing(tname text, colname1 text, val1 text, colname2 text, val2 text) returns integer AS $$
DECLARE
 c int;
begin
EXECUTE 'SELECT COUNT(*) FROM '|| tname || ' WHERE ' || colname1 ||'::text = $1 AND '|| colname2 ||'::text = $2'
INTO c
USING val1, val2;
RETURN c;
end;
$$ language plpgsql;

WITH fields AS (
SELECT
tablename,
attname,
unnest(most_common_vals::text::text[]) as val,
unnest(most_common_freqs::text::float[]) as freq,
null_frac,
reltuples,
(SELECT SUM(freqs) FROM UNNEST(most_common_freqs) freqs) total_freqs
FROM pg_stats
INNER JOIN pg_class ON (relname = tablename)
WHERE schemaname = 'ctgov'
AND most_common_vals IS NOT NULL
AND reltuples > 100000
),
eligible_fields AS (
 SELECT * FROM fields WHERE total_freqs > 0.8
),
counts_combine AS (
SELECT
f.tablename,
f.attname att1,
f.val,
e.attname att2,
e.val,
f.freq * e.freq * e.reltuples as expected_rows,
mycountingthing(f.tablename, f.attname, f.val, e.attname, e.val) as actual_rows
FROM eligible_fields e
INNER JOIN fields f ON (f.tablename = e.tablename AND f.attname <> e.attname)
WHERE f.freq * e.freq * e.reltuples > 100
AND mycountingthing(f.tablename, f.attname, f.val, e.attname, e.val) > 0
)

SELECT DISTINCT(tablename, att1, att2)
FROM counts_combine
WHERE actual_rows > 0 AND expected_rows < actual_rows * 0.2;

@louisemeta

CREATE STATISTICS

The goal of CREATE STATISTICS is to mitigate the case we just described.

You can manually force postgres to link two columns. There are three
types of statistics you can create:

• Functional dependencies

• Multivariate N-Distinct Count

• Multivariate MCV lists

@louisemeta

Dependencies

Describes a dependency between two columns:

• Country and city that I just showed

• The values of two columns vary together (column a = column b + 1)

CREATE STATISTICS (dependencies) on country, city FROM facilities;

@louisemeta

Multivariate ndistinct count

For each column, you have an ndistinct.

During GROUP BY, calculating the number of distinct groups can be wrong
when the columns are linked.

To improve that you can do:

CREATE STATISTICS (ndistinct) on category, title FROM
baseline_measurements;

@louisemeta

NDistinct

In baseline_measurements, the category and the title have a dependency.

Here are examples of the values that might make you understand why:
("Sex: Female, Male",Female) | 183232
("Sex: Female, Male",Male) | 183229
("Race (NIH/OMB)",Asian) | 69469
("Race (NIH/OMB)",White) | 69465
("Race (NIH/OMB)","American Indian or Alaska Native") | 69460
("Race (NIH/OMB)","Black or African American") | 69448
("Race (NIH/OMB)","More than one race") | 69445
("Race (NIH/OMB)","Unknown or Not Reported") | 69442
("Race (NIH/OMB)","Native Hawaiian or Other Pacific Islander") | 69436

@louisemeta

NDistinct

SELECT category, title, SUM(number_analyzed)
FROM baseline_measurements
WHERE category IS NOT NULL
GROUP BY category, title
ORDER BY 3 DESC
LIMIT 10;

Before CREATE STATISTICS After CREATE STATISTICS

Time: 872.956 ms Time: 335.421 ms

@louisemeta

NDistinct

QUERY PLAN

 Limit (cost=211176.28..211176.31 rows=10 width=44)
 -> Sort (cost=211176.28..211753.87 rows=231037 width=44)
 Sort Key: (sum(number_analyzed)) DESC
 -> Finalize GroupAggregate (cost=138745.01..206183.66 rows=231037 width=44)
 Group Key: category, title
 -> Gather Merge (cost=138745.01..200407.73 rows=462074 width=44)
 Workers Planned: 2
 -> Partial GroupAggregate (cost=137744.98..146072.90 rows=231037 width=44)
 Group Key: category, title
 -> Sort (cost=137744.98..139249.37 rows=601755 width=40)
 Sort Key: category, title
 -> Parallel Seq Scan on baseline_measurements (cost=0.00..63523.06
rows=601755 width=40)
 Filter: (category IS NOT NULL)
(13 rows)

Before CREATE STATISTICS

@louisemeta

NDistinct

QUERY PLAN
--
 Limit (cost=71144.62..71144.64 rows=10 width=44)
 -> Sort (cost=71144.62..71159.58 rows=5985 width=44)
 Sort Key: (sum(number_analyzed)) DESC
 -> Finalize GroupAggregate (cost=69469.06..71015.28 rows=5985 width=44)
 Group Key: category, title
 -> Gather Merge (cost=69469.06..70865.66 rows=11970 width=44)
 Workers Planned: 2
 -> Sort (cost=68469.04..68484.00 rows=5985 width=44)
 Sort Key: category, title
 -> Partial HashAggregate (cost=68033.71..68093.56 rows=5985 width=44)
 Group Key: category, title
 -> Parallel Seq Scan on baseline_measurements
(cost=0.00..63517.75 rows=602129 width=40)
 Filter: (category IS NOT NULL)
(13 rows)

After CREATE STATISTICS

@louisemeta

NDistinct

-> Gather Merge
(cost=138745.01..200407.73
rows=462074 width=44)
Workers Planned: 2
-> Partial GroupAggregate
(cost=137744.98..146072.90
rows=231037 width=44)
Group Key: category, title
-> Sort
(cost=137744.98..139249.37
rows=601755 width=40)
Sort Key: category, title

Comparing Query Plans

-> Gather Merge
(cost=69469.06..70865.66
rows=11970 width=44)
Workers Planned: 2
-> Sort
(cost=68469.04..68484.00
rows=5985 width=44)
Sort Key: category, title

-> Partial HashAggregate
(cost=68033.71..68093.56
rows=5985 width=44)
Group Key: category, title

@louisemeta

Multivariate MCV list

This is the same idea than MCVs, but for more than one column.

It will aggregate the frequency of combined columns.

The difference with functional dependencies is that MCV list support other
operators like <,>,<=,>=.

CREATE STATISTICS (mcv) on organ_system, adverse_event_term FROM
reported_events;

@louisemeta

Multivariate MCV list

 organ_system | adverse_event_term

 Gastrointestinal disorders | Nausea
 Nervous system disorders | Headache
 Gastrointestinal disorders | Vomiting
 General disorders | Fatigue
 Gastrointestinal disorders | Diarrhoea
 Nervous system disorders | Dizziness
 Gastrointestinal disorders | Constipation
 General disorders | Pyrexia
 Gastrointestinal disorders | Abdominal pain
 Musculoskeletal and connective tissue disorders | Back pain
 Respiratory, thoracic and mediastinal disorders | Cough

@louisemeta

Multivariate MCV List
Before and After CREATE STATISTICS

EXPLAIN ANALYZE
SELECT nct_id, organ_system, adverse_event_term,
frequency_threshold
FROM reported_events
WHERE organ_system = 'Respiratory, thoracic and mediastinal
disorders'
AND adverse_event_term = 'Hypoxia'
ORDER BY frequency_threshold DESC
LIMIT 10;

@louisemeta

Multivariate MCV List
Before and after CREATE STATISTICS

Before

Index Scan using reported_events_organ_system_adverse_event_term_idx on reported_events
(cost=0.56..4944.66 rows=1232 width=63) (actual time=0.042..14.498 rows=17057
loops=1
)

After

Index Scan using reported_events_organ_system_adverse_event_term_idx on reported_events
(cost=0.56..57259.44 rows=14453 width=63) (actual time=0.112..16.302
rows=17057 loops
=1)

@louisemeta

Extended Statistics Limitations

Because histograms aren’t supported in extended statistics, they are only
accurate:

• For MCVs

• If the rest of your dataset is evenly distributed

@louisemeta

Extended Statistics Limitations

The same query that I just ran, with a different adverse event, will have, again, a inaccurate selectivity:

EXPLAIN ANALYZE SELECT nct_id, organ_system, adverse_event_term, frequency_threshold FROM
reported_events WHERE organ_system = 'Respiratory, thoracic and mediastinal disorders' AND
adverse_event_term = 'Asthma' ORDER BY frequency_threshold DESC LIMIT 10;

QUERY PLAN
--
 Limit (cost=230.33..230.35 rows=10 width=63) (actual time=83.550..83.553 rows=10 loops=1)
 -> Sort (cost=230.33..230.47 rows=56 width=63) (actual time=83.546..83.547 rows=10 loops=1)
 Sort Key: frequency_threshold DESC
 Sort Method: top-N heapsort Memory: 26kB
 -> Index Scan using reported_events_organ_system_adverse_event_term_idx on reported_events
(cost=0.56..229.12 rows=56 width=63) (actual time=1.252..81.977 rows=11889 loops=1)
 Index Cond: (((organ_system)::text = 'Respiratory, thoracic and mediastinal
disorders'::text) AND ((adverse_event_term)::text = 'Asthma'::text))
 Planning Time: 0.433 ms
 Execution Time: 83.625 ms

@louisemeta

Configuration

@louisemeta

Configurations

• default_statistics_target: default is 100, can go from 1 to 10000.

• ALTER TABLE reported_events ALTER COLUMN organ_system SET
STATISTICS 1000;

• ALTER TABLE foo SET (n_distinct = value):

• Positive value = exact nb of distinct

• Negative value = percentage of the overall rows: -1 = each value is unique, -0.5:
each value appears twice

• Filtering columns: ANALYZE foo (bar);

@louisemeta

Configurations

EXPLAIN ANALYZE SELECT nct_id, organ_system, adverse_event_term, frequency_threshold FROM
reported_events WHERE organ_system = 'Respiratory, thoracic and mediastinal disorders' AND
adverse_event_term = 'Asthma' ORDER BY frequency_threshold DESC LIMIT 10;

QUERY PLAN

 Limit (cost=52487.38..52487.41 rows=10 width=63) (actual time=16.687..16.690 rows=10 loops=1)
 -> Sort (cost=52487.38..52520.29 rows=13161 width=63) (actual time=16.685..16.687 rows=10
loops=1)
 Sort Key: frequency_threshold DESC
 Sort Method: top-N heapsort Memory: 26kB
 -> Index Scan using reported_events_organ_system_adverse_event_term_idx on
reported_events (cost=0.56..52202.98 rows=13161 width=63) (actual time=0.093..14.569
rows=11889 loops
=1)
 Index Cond: (((organ_system)::text = 'Respiratory, thoracic and mediastinal
disorders'::text) AND ((adverse_event_term)::text = 'Asthma'::text))
 Planning Time: 3.293 ms
 Execution Time: 16.725 ms

@louisemeta

Configurations

EXPLAIN ANALYZE SELECT nct_id, organ_system, adverse_event_term, frequency_threshold FROM
reported_events WHERE organ_system = 'Respiratory, thoracic and mediastinal disorders' AND
adverse_event_term = 'Hypercapnia' ORDER BY frequency_threshold DESC LIMIT 10;

QUERY PLAN

 Limit (cost=36.77..36.79 rows=8 width=63) (actual time=3.175..3.177 rows=10 loops=1)
 -> Sort (cost=36.77..36.79 rows=8 width=63) (actual time=3.174..3.175 rows=10 loops=1)
 Sort Key: frequency_threshold DESC
 Sort Method: top-N heapsort Memory: 26kB
 -> Index Scan using reported_events_organ_system_adverse_event_term_idx on
reported_events (cost=0.56..36.65 rows=8 width=63) (actual time=0.354..3.011
rows=718 loops=1)
 Index Cond: (((organ_system)::text = 'Respiratory, thoracic and mediastinal
disorders'::text) AND ((adverse_event_term)::text = 'Hypercapnia'::text))
 Planning Time: 1.528 ms
 Execution Time: 3.218 ms

@louisemeta

Configurations

• default_statistics_target: default is 100, can go from 1 to 10000.

• ALTER TABLE reported_events ALTER COLUMN organ_system SET
STATISTICS 1000;

• ALTER TABLE foo SET (n_distinct = value):

• Positive value = exact nb of distinct

• Negative value = percentage of the overall rows: -1 = each value is unique, -0.5:
each value appears twice

• Filtering columns: ANALYZE foo (bar);

@louisemeta

How statistics are gathered

@louisemeta

Overview of the process

src/backend/commands/analyze.c

While analyzing a table, postgres will gather statistics on that table. Here are the
steps:

1. Gathering the sample rows

2. Computing statistics on those sample rows according to the data type

3. Inserting/Updating into the pg_statistics table

@louisemeta

Gathering the sample rows
src/backend/utils/misc/sampling.c

The number of rows is based on the number on how many values we want to compute
(default_statistics_target parameter).

Number of rows by default: 300*100.

Postgres will go through the table and uses a reservoir sampling algorithm (Vitter)

1. Initialize list of sample rows

2. Scan rows until the list is full

3. Each new row has (to extremely simplify) a probability of 1/number of rows to be selected.

4. If row is selected, replace a random row in the existing list

@louisemeta

Gathering the sample rows
src/backend/utils/misc/sampling.c

The number of rows is based on the number on how many values we want to compute
(default_statistics_target parameter).

Number of rows by default: 300*100.

Postgres will go through the table and uses a reservoir sampling algorithm (Vitter)

1. Initialize list of sample rows

2. Scan rows until the list is full

3. Each new row has (to extremely simplify) a probability of 1/number of rows to be selected.

4. If row is selected, replace a random row in the existing list

@louisemeta

Computing statistics

src/backend/commands/analyze.c

Trivial, distinct of scalar ?

Fraction
of non-

null rows

Average
datum
width

MCV Number of distinct
values Histogram Correlation Operators

compute_trivial_stats X X No =

compute_distinct_stats X X X X Only =

compute_scalar_stats X X X X X X <,>,<=,>=,=

@louisemeta

Computing statistics

1. Initialize track, a list of previously seen values and their counter

2. Loop through the sample rows

1. If value hasn’t been seen before: insert it after the last item that has a count
greater than 1, the items after (that all had also 1 as a value), are bumped down
the track list, potentially dropping off older values.

2. Otherwise we increment the counter, and potentially bump it up the list

Most Common Values

Value

Counter

@louisemeta

Computing statistics

1. Initialize track, a list of previously seen values and their counter

2. Loop through the sample rows

1. If value hasn’t been seen before: insert it after the last item that has a count
greater than 1, the items after (that all had also 1 as a value), are bumped down
the track list, potentially dropping off older values.

2. Otherwise we increment the counter, and potentially bump it up the list

Most Common Values

Value 1 5 8 3 4 6

Counter 4 3 3 2 1 1

New value 2

@louisemeta

Computing statistics

1. Initialize track, a list of previously seen values and their counter

2. Loop through the sample rows

1. If value hasn’t been seen before: insert it after the last item that has a count
greater than 1, the items after (that all had also 1 as a value), are bumped down
the track list, potentially dropping off older values.

2. Otherwise we increment the counter, and potentially bump it up the list

Value 1 5 8 3 2 4

Counter 4 3 3 2 1 1

Most Common Values

@louisemeta

Computing statistics

1. Initialize track, a list of previously seen values and their counter

2. Loop through the sample rows

1. If value hasn’t been seen before: insert it after the last item that has a count
greater than 1, the items after (that all had also 1 as a value), are bumped down
the track list, potentially dropping off older values.

2. Otherwise we increment the counter, and potentially bump it up the list

Value 1 5 8 3 2 4

Counter 4 3 3 2 1 1

Found another 8

Most Common Values

@louisemeta

Computing statistics

1. Initialize track, a list of previously seen values and their counter

2. Loop through the sample rows

1. If value hasn’t been seen before: insert it after the last item that has a count
greater than 1, the items after (that all had also 1 as a value), are bumped down
the track list, potentially dropping off older values.

2. Otherwise we increment the counter, and potentially bump it up the list

Value 1 8 5 3 2 4

Counter 4 4 3 2 1 1

Most Common Values

@louisemeta

Computing statistics

Compute scalar stats algorithm:

1. Compute a track list of all values in the sample rows

2. The values that are significantly more common go into MCV

3. The leftover values are ordered by value and split into buckets

1. Nb buckets = number of distincts values - number of MCV

2. Pick values from the list every X items for the histogram bounds:

 X = number of left items in the track list / number of buckets

Histogram

@louisemeta

Computing statistics

MCV = (1, 8, 5, 3)

Nb distinct = 30

Nb buckets = 26

Items left = 71

Buckets size = 71/26 = 2.7.

Histogram: (2, 2, … 4, 4, 9, 11, 13, 100, 100…)

Histogram

Value 1 8 5 3 2 4 100 7 12 10 13 6 9 11

Count 50 49 48 45 20 18 17 2 1 1 1 1 1 1

2 4 6 7 9 10 11 12 13 100

20 18 1 2 1 1 1 1 1 17

@louisemeta

Computing statistics

Limited number of distinct values:

If you track list includes every value from our sample rows, n_distinct = nb of value seen in the
sample

Otherwise, postgres is using an estimator proposed by Haas and Stokes.

	 	

Number of distinct values

n*d / (n - f1 + f1*n/N)

Number of non null rows
in the sample

Number of distinct values
in sample

Number of values seen
in sample

Estimated
number of non
null rows

@louisemeta

Computing statistics
Number of distinct values

Value 1 8 5 3 2 4 28 12 13 23

Count 9 8 7 6 5 5 3 2 2 2

Let’s say I had 100 sample rows: 20 were nulls

Let’s say I had 15 distinct values, and 10 multiple
ones in my track list

n = 80 non null

d = 25 values

f1 = 15 distinct values

N = 1200 * (1 - 0.2) = 1000

n*d / (n - f1 + f1*n/N)

80*25/(80-15+15*80/1000) = 30.21111

@louisemeta

Conclusion

@louisemeta

What we learned today

• Postgres gathers single column statistics during ANALYZE
• The query optimizer uses those statistics to choose a query plan
• Selectivity is the % of rows that a clause would return
• Postgres merges selectivities by assuming that columns are unrelated which is not always true
• Histogram and MCVs are computed by brute force, your ANALYZE is impacted by choosing a higher target

value
• A higher target value also means a slower query optimizer as it has to loop through more elements in the

MCV and histogram
• BUT a higher value might lead to a better query plan, therefor a faster query execution
• CREATE STATISTICS can help the query planner to choose a better plan if your columns have a relationship

between them.
• But multivariate statistics also have limitations

@louisemeta

Questions ?
(Come and see me, there’s no way I finish this talk with enough time for questions)

