
HIGH-CONCURRENCY DISTRIBUTED
SNAPSHOTS

ANTS AASMA

pgconf.eu 2024



Hello

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 2/49



About me

Ants Aasma

Senior Database Consultant

13 years of helping people make PostgreSQL run fast

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 3/49



About this talk

• Overview of database concurrency.
• How we solve this today in PostgreSQL.
• Proposal for how to do it in the future.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 4/49



What are snapshots

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 5/49



Lets start with ACID

We all love transactions!

• Atomicity - all or nothing!
• Consistency - there are rules!
• Isolation - none of this concurrency weirdness!
• Durability - stuff doesn’t just disappear!

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 6/49



MVCC core tenets

• When a query runs it sees database state as unchanging.

• Meanwhile we want to perform updates without waiting for this query.
• After the updates complete we want to run queries that can see these writes.
• Original query can still see original state.
• Therefore we need to have different versions of rows visible to different queries.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 7/49



MVCC core tenets

• When a query runs it sees database state as unchanging.
• Meanwhile we want to perform updates without waiting for this query.

• After the updates complete we want to run queries that can see these writes.
• Original query can still see original state.
• Therefore we need to have different versions of rows visible to different queries.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 7/49



MVCC core tenets

• When a query runs it sees database state as unchanging.
• Meanwhile we want to perform updates without waiting for this query.
• After the updates complete we want to run queries that can see these writes.

• Original query can still see original state.
• Therefore we need to have different versions of rows visible to different queries.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 7/49



MVCC core tenets

• When a query runs it sees database state as unchanging.
• Meanwhile we want to perform updates without waiting for this query.
• After the updates complete we want to run queries that can see these writes.
• Original query can still see original state.

• Therefore we need to have different versions of rows visible to different queries.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 7/49



MVCC core tenets

• When a query runs it sees database state as unchanging.
• Meanwhile we want to perform updates without waiting for this query.
• After the updates complete we want to run queries that can see these writes.
• Original query can still see original state.
• Therefore we need to have different versions of rows visible to different queries.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 7/49



Snapshots to the rescue

• Tag every row version with transactions that added it and removed it.
• When starting a read, create a snapshot datastructure.

XidInMVCCSnapshot(xid, snapshot) -> bool
• Represents a point in time in the past.
• Divides world into past and future.
• Ideally, snapshots should agree on the order of things.

If we have snapshot that thinks txA is past, txB is future, then it should be
impossible to get a snapshot that thinks txB is past, txA is future.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 8/49



Complicating factors

• Writing transactions can run for a long time.

• They may also run for a short time.
• Transaction completion order does not match start order (xid order).
• While writing row versions we don’t know the completion order.
• Not feasible to go back and rewrite everything.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 9/49



Complicating factors

• Writing transactions can run for a long time.
• They may also run for a short time.

• Transaction completion order does not match start order (xid order).
• While writing row versions we don’t know the completion order.
• Not feasible to go back and rewrite everything.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 9/49



Complicating factors

• Writing transactions can run for a long time.
• They may also run for a short time.
• Transaction completion order does not match start order (xid order).

• While writing row versions we don’t know the completion order.
• Not feasible to go back and rewrite everything.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 9/49



Complicating factors

• Writing transactions can run for a long time.
• They may also run for a short time.
• Transaction completion order does not match start order (xid order).
• While writing row versions we don’t know the completion order.

• Not feasible to go back and rewrite everything.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 9/49



Complicating factors

• Writing transactions can run for a long time.
• They may also run for a short time.
• Transaction completion order does not match start order (xid order).
• While writing row versions we don’t know the completion order.
• Not feasible to go back and rewrite everything.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 9/49



SQL isolation levels

BEGIN ISOLATION LEVEL READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

• Not well defined.
• Does not capture the space of possibilities.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 10/49



SQL isolation levels

BEGIN ISOLATION LEVEL READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

• Not well defined.
• Does not capture the space of possibilities.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 10/49



Zoo of consistency levels

© Jepsen, LLC.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 11/49



More consistent is not always more better

Higher consistency levels have fundamental tradeoffs that are impossible to
engineer out.

• For availability

• For latency

Users must be able to pick a level suitable for their problem.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 12/49



More consistent is not always more better

Higher consistency levels have fundamental tradeoffs that are impossible to
engineer out.

• For availability

• For latency

Users must be able to pick a level suitable for their problem.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 12/49



More consistent is not always more better

Higher consistency levels have fundamental tradeoffs that are impossible to
engineer out.

• For availability

• For latency

Users must be able to pick a level suitable for their problem.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 12/49



More consistent is not always more better

Higher consistency levels have fundamental tradeoffs that are impossible to
engineer out.

• For availability

• For latency

Users must be able to pick a level suitable for their problem.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 12/49



Where we are today

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 13/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).

• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1

▶ xid >= xmax -> future

xmin - earliest running xid

▶ xid < xmin -> past

xip - list of running transactions

▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1

▶ xid >= xmax -> future

xmin - earliest running xid

▶ xid < xmin -> past

xip - list of running transactions

▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1

▶ xid >= xmax -> future
xmin - earliest running xid

▶ xid < xmin -> past

xip - list of running transactions

▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1
▶ xid >= xmax -> future

xmin - earliest running xid

▶ xid < xmin -> past

xip - list of running transactions

▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1
▶ xid >= xmax -> future

xmin - earliest running xid

▶ xid < xmin -> past
xip - list of running transactions

▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1
▶ xid >= xmax -> future

xmin - earliest running xid
▶ xid < xmin -> past

xip - list of running transactions

▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1
▶ xid >= xmax -> future

xmin - earliest running xid
▶ xid < xmin -> past

xip - list of running transactions

▶ If in this list, then future, otherwise past.
• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1
▶ xid >= xmax -> future

xmin - earliest running xid
▶ xid < xmin -> past

xip - list of running transactions
▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1
▶ xid >= xmax -> future

xmin - earliest running xid
▶ xid < xmin -> past

xip - list of running transactions
▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.

• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



How snapshots work in PostgreSQL

• Every writing transaction publishes their xid in shared memory (ProcArray).
• When acquiring a snapshot (GetSnapshotData()) use it to fill in the following:

xmax - latest completed xid + 1
▶ xid >= xmax -> future

xmin - earliest running xid
▶ xid < xmin -> past

xip - list of running transactions
▶ If in this list, then future, otherwise past.

• Still have to check pg_xact whether it was successful.
• Visibility order determined by ProcArrayLock acquisition.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 14/49



ProcArray scalability issues

• Every commit acquires ProcArrayLock exclusively.
• Every read scans the whole ProcArray while holding a share lock.
• Size of ProcArray = number of connections.

More CPUs and more IO throughput means more connections needed.
• Larger proc array takes longer to scan.
• More writing transactions means more time spent locking exclusively.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 15/49



Things we have done to make it faster

• New running transactions are published in a lock-free manner.
• Group commit batch updates ProcArray for many committers at once.
• Major improvements in PG14 by Andres Freund.

xids are stored as a dense array for faster scanning.
Snapshot contents are cached until next commit.

• For most workloads works well enough

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 16/49



Things we have done to make it faster

• New running transactions are published in a lock-free manner.
• Group commit batch updates ProcArray for many committers at once.
• Major improvements in PG14 by Andres Freund.

xids are stored as a dense array for faster scanning.
Snapshot contents are cached until next commit.

• For most workloads works well enough

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 16/49



Things we could still do

• Vectorize the main loop in GetSnapshotData().
• Lock free snapshot cache.
• Incremental snapshot creation.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 17/49



Subtransactions

• Subtransactions mean multiple xids per transaction.
Potentially unlimited.

• Limited space in shared memory to track this.
• If filled up need a Subtrans lookup for every visibility check in [xmin, xmax).

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 18/49



Consistency? Eventually. . .

• On primary the order of transactions is determined by ProcArray order
• On standby the order is determined by Commit WAL record order

CommitTransaction()
RecordTransactionCommit()
XactLogCommitRecord()
if (synchronous_commit) // can be set per transaction

XLogFlush()
SyncRepWaitForLSN() // these two can take a looong time

ProcArrayEndTransaction()

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 19/49



Consistency? Eventually. . .

• On primary the order of transactions is determined by ProcArray order
• On standby the order is determined by Commit WAL record order

CommitTransaction()
RecordTransactionCommit()
XactLogCommitRecord()
if (synchronous_commit) // can be set per transaction
XLogFlush()
SyncRepWaitForLSN() // these two can take a looong time

ProcArrayEndTransaction()

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 19/49



Pick three

• Commit order matches on primary and replica
• No wait when synchronous_commit = off
• Read-your-write consistency
• Single WAL record for commit

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 20/49



The non-synchronous commit

Problem scenario:

1. Client tries to book a room.
2. Synchronous commit blocks.
3. Client connection fails, commit becomes visible.
4. Client reconnects, checks that booking commit succeeded.
5. There is a failover, replica does not have that commit.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 21/49



Does not distribute

• For sharded databases would be nice to get a consistent snapshot.
• Would like to have ACID for cross-shard transactions:

If a tx visible on shard A it should also be visible on B
Transactions should not disappear and re-appear

• Having a distributed ProcArray and global locking does not scale:
Snapshots get even bigger.
Even more write transactions.
More likelihood of node failures.

• Consistent order of durability and visibility becomes even more important.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 22/49



CSN snapshots

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 23/49



Core idea

• On transaction commit assign a Commit Sequence Number (CSN).
Thinking of it as a commit time is not totally wrong.

• Should only go forward, not backward.
• Store this in a way that we can easily calculate xid -> csn.
• A snapshot is just the latest committed CSN value.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 24/49



Not a new idea

• Similar stuff is present all over distributed database landscape.
Google Spanner
YugabyteDB
CockroachDB

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 25/49



What to use as the CSN

• Free to use anything that fulfills the requirements.
• Could use a simple counter (we already have it as SerCommitSeqNo).
• Could use Commit record WAL position (we need to assign it anyway).
• Could use a combination of a monotonic wall clock and logical counter (see

HybridTime).

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 26/49

https://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf


Invariants

1. After a commit becomes visible no transaction with a lower CSN can commit.

• Needed for immutable snapshots.

2. After a commit returns, all new snapshots should get equal or bigger CSN.

• Read your writes. (can be relaxed a bit by applying Lamport timestamp)

3. After a read completes all subsequent reads must see equal or higher CSN.

• Transactions don’t disappear and re-appear.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 27/49



Storing XID to CSN mapping

• Simplest answer: add CSN SLRU.
• 8 byte CSN @ 100k TPS = 800 KB/s

100k TPS = wraparound in 6h
• We already have CommitTs, maybe combine?
• Can replace Xact SLRU, or could be compressed to Xact after global xmin.
• Might be a performance issue for mixed short-long tx workloads, see SubTrans

SLRU.
Some ideas how to get around it.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 28/49



Adding concurrency

Main workflow:
MyCSN = AcquireCSN();
RecordXidToCsnMapping(MyXid, MyCSN);
WaitForDurability()
UpdateVisibleCSN(MyCSN)

• Definitely want to do the wait concurrently.
• Updating visible CSN needs to happen in CSN AcquireCSN order.
• Build a queue, wait on anyone ahead of us, if we are first, release everyone

already waiting behind us.
Analogous to ProcArray group update.

• Fixes the non-synchronous commit.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 29/49



Visibility checks

• Lookup XID in CSN mapping, compare with value in snapshot.
bool
XidVisibleToSnapshot(TransactionId xid, Snapshot snapshot)
{
return LookupXidCsn(xid) <= snapshot->csn;

}

• Sometimes can skip lookups:

xmax can be used to reject early
some approximation of xmin is also useful

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 30/49



Subtransactions

• Option 1: Tag every committed subxid with CSN on commit.
• Option 2: Carve a bit of CSN space to identify subtransactions.

Lookup parent on visibility check.
Update XID to CSN mapping.

• Can get rid of SubTrans SLRU?

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 31/49



Resolving the synchronous commit quadrilemma

• synchronous_commit = off will wait for durability of anyone that is commiting
ahead of us.

• Add synchronous_visibility that allows user to “fire and forget” write
transactions.

(working title)
When disabled, just skip waiting in UpdateVisibleCSN() and let someone else
make this transaction visible.
Not possible in all cases (DDL)

• Optionally add a way to “see into the future” by reading non-durable transactions
BEGIN ISOLATION LEVEL READ UNCOMMITTED

• Only affects users that run a mix of synchronous_commit and expect to see the
results.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 32/49



In a distributed system

• Some synchronization is needed to ensure that all other commits < commit
CSN are done committing.

• Coordinating with every node on every commit is undesirable.
• Spanner uses realtime clock dervived timestamp with error bounds for CSN.

On commit waits until everybody in cluster must agree commit timestamp is in
the past.
Adds non-trivial amount of latency.

• YugabyteDB HybridTime uses NTP clock with a logical counter on top. Ensures
this never goes backwards.

By eagerly sharing this can get illusion of consistency with no waiting.
Can still do the waiting if so desired.

• Reading from replicas still needs to wait for WAL replay.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 33/49



Hybrid snapshots

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 34/49



Preface

Maybe this complexity is not needed.

Almost certainly a bad idea for initial version.

Demonstrates potential solutions to problems that may or may not become
important.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 35/49



Core insight

Given a snapshot (xmin, csn, xmax) we can build the same snapshot that we would
have gotten from ProcArray by scanning XidToCSN mapping.
for (xid = xmin; xid < xmax; xid++)

if (LookupXidCsn(xid) > snapshot->csn)
xip[n++] = xid;

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 36/49



Core insight part 2

Snapshots can be converted incrementally by keeping track of a threshold:
struct SnapshotData
{

TransactionId xmax
CSN csn;
TransactionId csn_xmin;
TransactionId *xip;
TransactionId xmin;
//...

}

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 37/49



But why?

• XidToCSN lookups can get expensive when done per row.
• Only have to do when looking at rows touched between [xmin, xmax)
• Long running transactions can make this range big -> lots of lookups.
• If we stick long running transactions in a separate xip array we can tighten the

range.
Less CSN lookups needed.

• By having a limited xid range where lookups are needed can use a ring buffer to
store CSNs.

One indirection less.
Simpler to make lock free.

• Long running read transactions will also need conversion.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 38/49



Shared memory structures

• L1 mapping: CSN ringbuffer[N]

• Has the following “clock hands”

nextXid - next slot to hand out
csnXmin - every running transaction before this is in L2
globalCSNXmin - every snapshot has higher csnxmin

• L2 mapping:

XidCSNPair longTx[]

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 39/49



Built on hope

• Hopefully most transactions will have committed when we have to move
csnXmin hand past them.

• Hopefully most snapshots are released before we hit their csnXmin.

A large enough ringbuffer will ensure hopes come true.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 40/49



Built on hope

• Hopefully most transactions will have committed when we have to move
csnXmin hand past them.

• Hopefully most snapshots are released before we hit their csnXmin.

A large enough ringbuffer will ensure hopes come true.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 40/49



Common operations

• AssignTransactionId():
If there is room, bump nextXid
If not, make some.

• GetSnapshotData()
Read visible_csn, xmax, csn_xmin
Scan L2 for long running transactions. (could do this lazily?)
Publish csn_xmin

• CommitTransaction()
If we are still in L1, write CSN
If we are in L2, look up our entry, tag with CSN

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 41/49



Batch operation

• Every now and then move clock hands up.
Reduce contention on shared datastructures by this factor.

• Scan L1 from csnXmin for still running transactions, move them to L2.
Write Xact entries for the rest

• Scan procarray for new global CSNXmin.
• Signal all snapshot holders with old enough csnXmin to advance their CSN xmin.
• To advance snapshot csnXmin, scan L1.
• A few extra clock hands and careful coordination can make a lot of this lock

free.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 42/49



Visibility check
bool
XidVisibleToSnapshot(TransactionId xid, Snapshot snapshot)
{

if (xid > xmax) return false;
if (xid < xmin) return true;
if (xid < snapshot->csn_xmin)

return pg_lfind32(xid, snapshot->xip, snapshot->xcnt);

csn = pg_atomic_read_u64(&ringBuffer[xid % RING_SIZE]);
read_barrier();
if (pg_atomic_read_u64(ringBufferCtl->globalCSNXmin) > xid)

goto evicted;
return csn <= snapshot->csn;
evicted: // TBD

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 43/49



Existing work

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 44/49



Andrey Lepikhov, et. al

• Last state: 2021-11-19.
• Thread “Global Snapshots”.
• CSN is assigned during ProcArrayEndTransaction().
• CSN assignment is WAL logged.
• On replicas transaction visibility is postponed until visibility record arrives.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 45/49



Heikki Linnakangas

• Based on “Global Snaphshots” patch.
• Heavily changed to only use CSN based snapshots on standbys.
• CSN = Commit LSN.
• Main goal is to get rid of KnownAssignedXids hackery.
• Reduced scope to get something more easily committable.
• Intention to get it into 18.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 46/49



Recap

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 47/49



Where are we today

• Our current snapshot mechanism has some major issues when running across
multiple machines.

• Some of those issues are implementation details exposed as bad semantics.
• CSN snapshots provide an easy to reason about way to fix those problems.
• CSN snapshots also make it easier to implement distributed transactions.
• Performance penalty/gain remains to be proven by an actual implementation.

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 48/49



Thanks!

High-concurrency distributed snapshots Ants Aasma pgconf.eu 2024 49/49


	Hello
	What are snapshots
	Where we are today
	CSN snapshots
	Hybrid snapshots
	Existing work
	Recap
	Thanks!

