
RAFIA SABIH
SR. SOFTWARE ENGINEER

POSTGRESQL EXECUTOR: EXECUTING
YOUR EXECUTION PLAN

ABOUT CYBERTEC

Highly specialized,
fast growing
IT company

International Team
(10 countries),

6 locations worldwide

Database , Data &
Science Services

Owner managed
since 2000

DATABASE PRODUCTS & TOOLS

AGENDA
1. CONTROL FLOW OF THE EXECUTOR

2. IMPORTANT DATA STRUCTURES

3. MISCELLANEOUS

POSTGRESQL OVERVIEW
Parsing

Rewriting

Planning

Execution

Syntax check,
no catalog

lookups

Applies rules,
rewrite query
when using
views, etc.

Pick the plan
with the lowest

cost

JOURNEY OF THE QUERY
● exec_simple_query

○ PortalStart - preparatory phase

○ PortalRun - actual execution

○ PortalDrop - cleanup and close

exec_simple_query
exec_simple_query

PortalStart

PortalRun

PortalDrop

JOURNEY OF THE QUERY
● Portal (defined in portal.h)

○ active snapshot

○ queryDesc

○ sub transaction information

○ parameters to pass to query

○ Portal strategy - select, update,
etc.

Portals are an
abstraction for the

execution state of the
query

JOURNEY OF THE QUERY
PREPARATION PHASE
● PortalStart

○ ExecutorStart

■ standard_ExecutorStart

■ if there is any function for this hook, then it runs now

● standard_ExecutorStart

○ takes queryDesc as an input

○ tupDesc is now filled to describe the returning tuples

JOURNEY OF THE QUERY
PREPARATION PHASE
● QueryDesc (defined in execdesc.h)

○ snapshot to be used for the query

○ tupDesc

○ Estate

○ Planstate

○ total time spent in query execution

QueryDesc
encapsulates

everything required by
the executor

JOURNEY OF THE QUERY
PREPARATION PHASE
● Estate (defined in execnodes.h)

○ Nodetag
○ ScanDirection
○ List of range tables in query
○ Index relations
○ relations
○ parameters info - internal, external
○ memory context
○ dsa_area - required for parallel query

Working state for an
executor invocation

JOURNEY OF THE QUERY
PREPARATION PHASE
● standard_ExecutorStart

○ Create Executor EState

○ switches into per query memory context

○ InitPlan

■ ExecInitNode

● Calls the init function for the respective Plan Node

● ExecInitAgg, ExecInitSeqScan

JOURNEY OF THE QUERY
EXECUTION PHASE
● PortalRun

○ ExecutorRun

■ standard_ExecutorRun

■ if any hooks are installed, that code runs now

■ ExecutePlan

● ExecProcNode

○ Keeps on executing the planstate node, till the number of
tuples required is reached

JOURNEY OF A QUERY
EXECUTION: SELECT QUERY
● SELECT COUNT(*) FROM TAB ;

1| Aggregate (cost=163004.04..163004.05 rows=1 width=8) (actual time=505.401..505.401
rows=1 loops=1)

2| -> Seq Scan on tab (cost=0.00..139255.63 rows=9499363 width=0) (actual
time=0.143..291.517 rows=9502608 loops=1)

3| Planning Time: 0.313 ms
4| Execution Time: 505.474 ms
5| (4 rows)

JOURNEY OF A QUERY
EXECUTION: SELECT QUERY
● SELECT COUNT(*) FROM TAB ;

ExecProcNode ExecAgg ExecScan ExecScanFetch

receives the tuples
from outer subplan

and aggregates
appropriately Execution sequence

Keeps on returning
tuples, till required

called via
fetch_input_tuple,

checks conditions on
tuple

gets next
potential tuple

JOURNEY OF A QUERY
EXECUTION: JOINS
● SELECT * FROM TAB1, TAB2 WHERE TAB1.J = TAB2.J;

1| Hash Join (cost=78.25..174985.49 rows=2900 width=16) (actual time=1.224..676.400
rows=5800 loops=1)

2| Hash Cond: (tab.j = tab2.j)
3| -> Seq Scan on tab (cost=0.00..139255.63 rows=9499363 width=8) (actual

 time=0.148.. rows=...loops=1)
4| -> Hash (cost=42.00..42.00 rows=2900 width=8) (actual time=0.907..0.907 rows=2900

 loops=1)
5| Buckets: 4096 Batches: 1 Memory Usage: 138kB
6| -> Seq Scan on tab2 (cost=0.00..42.00 rows=2900 width=8) (actual

 time=0.112..0.380 rows=… loops=1)
7| Planning Time: 0.402 ms
8| Execution Time: 676.821 ms
9| (8 rows)

JOURNEY OF A QUERY
EXECUTION: JOINS
● SELECT * FROM TAB1, TAB2 WHERE TAB1.J = TAB2.J;

ExecProcNode ExecHashJoin ExecHashTable
Create

MultiExecProc
Node

Doesn’t return a
tuple, but a hash
table or bitmap

like structs

Execution sequence

creates an
empty hash

table structure

MultiExecHash

Doesn’t return a
hash table directly
rather in HashState

node

ExecProcNodeExecSeqScan. . .

JOURNEY OF A QUERY
EXECUTION: JOINS
● SELECT * FROM TAB1, TAB2 WHERE TAB1.J = TAB2.J;

ExecHashJoin
OuterGetTuple

ExecHashGetBucket
AndBatch

ExecScanHash
Bucket

Finds the hash
bucket based on the
hash value from the

received tuple

Execution sequence

Calls
ExecProcNode to
call the scan node

Scans the bucket
to get the matching

tuple

JOURNEY OF A QUERY
EXECUTION: INSERT
● INSERT INTO TAB VALUES (1,2);

1| Insert on tab (cost=0.00..0.01 rows=0 width=0) (actual time=0.707..0.708 rows=0
loops=1)

2| -> Result (cost=0.00..0.01 rows=1 width=8) (actual time=0.137..0.138 rows=1
loops=1)

3| Planning Time: 0.146 ms
4| Execution Time: 0.758 ms
5| (4 rows)

JOURNEY OF A QUERY
EXECUTION: INSERT
● INSERT INTO TAB VALUES (1,2);

ExecProcNode ExecModifyTable ExecInitInsert
Projection

table_slot_create

Execution sequence

Filter out the junk
attrs, match if the

input tuple matches
the target table

ExecInsert

Insert the tuple into
target relation,

indices, run triggers,
check conflicts

ExecMaterializeSlot

create a local
copy of the

tuple

table_tuple_insert

Actual insertion
of the tuple in the

table

JOURNEY OF THE QUERY
EXECUTION: PARALLEL QUERY
● Parallel Dynamic shared memory

● ParallelContext

○ Maximum number of workers to launch
○ nworkers_launched
○ *error_context_stack
○ dsm_segment *seg;

● TupleQueueReader

○ A DestReceiver of type DestTupleQueue, which is a TQueueDestReceiver writes tuples from the
executor to a shm_mq

○ A TupleQueueReader reads tuples from a shm_mq and returns the tuples

JOURNEY OF THE QUERY
EXECUTION: PARALLEL QUERY
● SELECT * FROM TAB WHERE A < 10 ;

1| Gather (cost=1000.00..94737.85 rows=53 width=8) (actual time=0.673.. rows=19 loops=1)
2| Workers Planned: 2
3| Workers Launched: 2
4| -> Parallel Seq Scan on tab (cost=0.00..93737.85 rows=22 width=8) (actual

time=38.989..113.687 rows=6 loops=3)
5| Filter: (a < 10)
6| Rows Removed by Filter: 3167530
7| Planning Time: 0.216 ms
8| Execution Time: 123.700 ms
9| (8 rows)

● SELECT * FROM TAB WHERE A < 10 ;

Execution Sequence at Master

ExecutePlan EnterParallel
Mode ExecProcNode ExecGather

LaunchParallel
Workers

ExecParallelC
reateReaders

ExecInitParallel
Plan

waits for the
tuples from the

workers

Setup required
infrastructure

Prohibits any
unsafe state

changes

gather_getnext

JOURNEY OF THE QUERY
EXECUTION: PARALLEL QUERY

● SELECT * FROM TAB WHERE A < 10 ;

Execution Sequence at Worker

table_beginscan_
parallel

ParallelQueryMain ExecutorStart

ExecSeqScanInitialize
Worker

ExecParallelInitialize
Worker

Parallel heap
scan

Initialize PlanState
etc. based on

shared_memory

JOURNEY OF THE QUERY
EXECUTION: PARALLEL QUERY

● SELECT * FROM TAB WHERE A < 10 ;

Execution Sequence at Master

ExecShutdown
GatherWorkers

ExecParallel
Finish

WaitForParallel
WorkersToExit

DestoryParallel
Context

ExitParallelMode

ExecShutdown
Node

ExecShutdown
Gather

ExecParallel
Cleanup

JOURNEY OF THE QUERY
EXECUTION: PARALLEL QUERY

JOURNEY OF THE QUERY
EXPRESSION EVALUATION
● In targetlist, where clauses, group by clauses, etc.

● Each separately executable expression tree is represented as a single ExprState node

● It contains the information to evaluate the expression in linear format

● ExprState
○ struct ExprEvalStep *steps
○ ExprStateEvalFunc evalfunc
○ Expr *expr

● ExprEvalStep

○ intptr_t opcode
○ Datum *resvalue
○ based on the instruction type, different inline structures are there
○

○

JOURNEY OF THE QUERY
EXPRESSION EVALUATION
● ExecInitExpr:

○ converts the Expr node tree to ExprState

○ precompute information if possible

○ each member of this array is of type ExprEvalSteps

○ it is non recursive

● ExecEndExpr

○ there is no such function

○ the memory is released with the reset/ delete of the memory context

JOURNEY OF THE QUERY
CLEANUP PHASE
● PortalDrop

○ ExecutorEnd

○ ExecEndNode

○ FreeExecutorState

■ Frees up all memory allocated for the query

○ FreeQueryDesc

● Drop respective buffer pins

● Close open relations

JOURNEY OF THE QUERY
EXECUTOR: REPO OVERVIEW
● Every exec node have their respective functions defined in respective files

○ scans - seq, index, bitmap (execScan, nodeBitmapHeapScan, …)

○ joins - nested loop, hash, merge

○ others - aggregate, sort, etc.

● There is a respective Init function to initialise the node to make necessary
preparations

○ ExecInitSeqScan, ExecInitMergeJoin

JOURNEY OF THE QUERY
EXECUTOR: REPO OVERVIEW
● There are a few Exec functions for the respective node, to do the actual

execution

○ ExecSeqScan, ExecSeqScanNext, ExecInsert

● There is a an end function to release the allocated storage

○ ExecEndSort, ExecEndAgg

JOURNEY OF THE QUERY
MEMORY MANAGEMENT
● All of the memory allocation in PostgreSQL is done via MemoryContext

● MemoryContexts are arranged as a forest
○ each context can have multiple children
○ each context can have maximum one parent
○ Reset/delete of a context causes its children also to reset/delete

JOURNEY OF THE QUERY
MEMORY MANAGEMENT
● The basic operations of a context are,
○ context creation
○ allocating memory
○ delete context
○ reset context
○ inquire about the total memory allocated in a context

● CurrentMemoryContext information available as a global variable

JOURNEY OF THE QUERY
MEMORY MANAGEMENT
● Some important MemoryContexts are
○ TopMemoryContext
○ PostmasterContext
○ CacheMemoryContext
○ TopTransactionContext
○ CurTransactionContext
○ ErrorContext

● A per-query memory context is created in CreateExecutorState()

● Most processing is done in per-tuple context to avoid intra-query memory leaks

JOURNEY OF THE QUERY
CONCLUSION
● CreateQueryDesc

○ ExecutorStart

■ CreateExecutorState – creates per-query context

■ AfterTriggerBeginQuery

■ ExecInitNode --- recursively scans plan tree

● CreateExprContext – creates per-tuple context

● ExecInitExpr

JOURNEY OF THE QUERY
CONCLUSION
● ExecutorRun

○ ExecProcNode --- recursively called in per-query context

■ ExecEvalExpr --- called in per-tuple context

■ ResetExprContext --- to free memory

● ExecutorFinish

○ ExecPostprocessPlan --- run any unfinished ModifyTable nodes

○ AfterTriggerEndQuery

JOURNEY OF THE QUERY
CONCLUSION
● ExecutorEnd

○ ExecEndNode --- recursively releases resources

○ FreeExecutorState – frees per-query context and child contexts

● FreeQueryDesc

KEEP EXECUTING!

THANK YOU !

IMPORTANT DATA STRUCTURES

● Plan tree

● Presentations are communication tools that can be used as lectures,
reports, and more.

● Presentations are communication tools that can be used as lectures,
reports, and more.

SLIDES STYLE GUIDELINES
1. Only use the Colors from CYBERTEC THEME →

2. Only use Roboto normal as font

3. Only use Consolas bold for Code

4. HEADLINES ALWAYS IN UPPERCASE

GUIDE

1. DO NOT USE THE TEMPLATES: use the
prepared slides on the left and copy them) →

2. For image slides use ONLY the template
image slides (no full slide images)

3. Use only graphical Elements from Page 4
(if you need other, get in touch with marketing)

4. Delete this guide and any slides you don’t
need

SLIDES USAGE GUIDELINES

GUIDE

SLIDES INDEX
1-3

4
5-6

7-15

Guidelines
Graphical Elements
Title Slides (for Talks use Slide Nr.6)
Company related Slides (ready to use)

24-28
29
30

31-32
33-40

Image Slides
Title/Chapter Slide
Quote Slide
Speaker Card Slide
Miscellaneous

16
17

18-19
20-21
22-23

Agenda/Index
Code Slide
Plain Text
Unordered Lists
Ordered Lists

TEMPLATES

GUIDE

GRAPHICAL ELEMENTS & ICONS

This is a box with
information

GUIDE

ÜBER CYBERTEC

Hoch spezialisiertes,
schnell wachsendes

 IT Unternehmen

Internationales Team
(10 Länder), weltweit

6 Standorte

Datenbank-, Data &
Science Services

Inhabergeführt seit
dem Jahr 2000

WARUM
PostgreSQL?

www.cybertec-postgresql.com

SKALIERBARKEIT

ADVANCED OPEN
SOURCE DATABASE

SYSTEM

UMFASSENDE
FUNKTIONALITÄT

25 JAHRE
ENTWICKLUNG

ZUVERLÄSSIGKEITKEINE
LIZENZKOSTEN

GERINGE
SUPPORTKOSTEN

WHY
PostgreSQL?

www.cybertec-postgresql.com

SCALABILITY

ADVANCED OPEN
SOURCE DATABASE

SYSTEM

EXTENSIVE
FUNCTIONALITY

25 YEARS OF
DEVELOPMENT

RELIABILITYNO
LICENSE COSTS

LOW
SUPPORT COSTS

DATABASE SERVICES
● 24/7 Support

● High Availability

● Consulting

● Performance Tuning

● Clustering

● Migration

● Etc.

ASSESSMENT

DATABASE MIGRATION

TRAINING

CONSULTING

APPLICATION

OBFUSCATION
& SECURITY

CLOUD
AUTOMATION

SUPPORT

ASSESSMENT

MIGRATION

TRAINING

CONSULTING

APPLICATION

OBFUSCATION
& SECURITY

CODE SLIDE
1| query = """SELECT DISTINCT *
2| FROM (
3| SELECT sources.id, sources.name FROM sources
4| WHERE sources.suite='{suite}' AND sources.architecture='{arch}'
5| AND sources.id NOT IN
6| (SELECT schedule.package_id FROM schedule WHERE

build_type='ci_build')
7| AND sources.id NOT IN
8| (SELECT results.package_id FROM results)
9| ORDER BY random()

10|) AS tmp
11| LIMIT {limit}""".format(suite=suite, arch=arch, limit=limit)

PLAIN TEXT
SUBTITLE
Presentations are communication tools that can be used as lectures,
reports, and more. Presentations are communication tools that can be
used as lectures, reports, and more.

Presentations are communication tools that can be used as lectures,
reports, and more.

UNORDERED LIST W/O SUBTITLE

● Presentations are communication tools that can be used as lectures,
reports, and more.

● Presentations are communication tools that can be used as lectures,
reports, and more.

● Presentations are communication tools that can be used as lectures,
reports, and more.

PLAIN TEXT W/O SUBTITLE

Presentations are communication tools that can be used as lectures, reports, and
more. Presentations are communication tools that can be used as lectures, reports,
and more.

Presentations are communication tools that can be used as lectures, reports, and
more.

UNORDERED LIST TEXT
SUBTITLE
● Presentations are communication tools that can be

used as lectures, reports, and more.

● Presentations are communication tools that can be
used as lectures, reports, and more.

● Presentations are communication tools that can be
used as lectures, reports, and more.

ORDERED LIST TEXT
SUBTITLE
1. Presentations are communication tools that can be

used as lectures, reports, and more.

2. Presentations are communication tools that can be
used as lectures, reports, and more.

3. Presentations are communication tools that can be
used as lectures, reports, and more.

ORDERED LIST W/O SUBTITLE

1. Presentations are communication tools that can be
used as lectures, reports, and more.

2. Presentations are communication tools that can be
used as lectures, reports, and more.

3. Presentations are communication tools that can be
used as lectures, reports, and more.

Presentations are communication tools
that can be used as demonstrations,
lectures, speeches, reports, and more.
Most of the time, they’re presented
before an audience. It serves a variety
of purposes, making them powerful
tools for convincing and teaching.

OUR WORLD
TECHNOLOGY AROUND
THE GLOBE

Presentations are
communication
tools that can be
used as
demonstrations,
lectures, speeches,
reports, and more.

OUR WORLD
TECHNOLOGY
AROUND THE GLOBE

Presentations are communication tools
that can be used as demonstrations,
lectures, speeches, reports, and more.
Most of the time, they’re presented
before an audience. It serves a variety
of purposes, making them powerful
tools for convincing and teaching.

OUR WORLD
TECHNOLOGY AROUND
THE GLOBE

Presentations are
communication
tools that can be
used as
demonstrations,
lectures, speeches,
reports, and more.

OUR WORLD
TECHNOLOGY
AROUND THE GLOBE

Pre-Digital
Presentations are communication tools
that can be used as lectures.

Post-Digital
Presentations are communication tools
that can be used as lectures.

WHERE DO WE GO NEXT?

HOW DO WE GET THERE?

THIS IS A BRAND
NEW QUOTE,

USE IT OR LOSE IT :)

ALBERT EINSTEIN

“

“

HANS-JÜRGEN SCHÖNIG
CEO & FOUNDER
EMAIL
hs@cybertec-postgresql.com

PHONE
+43 2622 930 22 - 666

WEB
www.cybertec-postgresql.com

NAME & SURNAME
YOUR POSITION
EMAIL
EMAILXXX@cybertec-postgresql.com

PHONE
Your Phone Number XXX

WEB
www.cybertec-postgresql.com

PLANNING

Presentations are
communication tools
that can be used
as lectures, reports, and
more.

CREATION OF TECHNOLOGY

PLANNING

Presentations are
communication tools
that can be used
as lectures, reports, and
more.

PLANNING

Presentations are
communication tools
that can be used
as lectures, reports, and
more.

ADDITIONAL READING

TECH FUTURE TODAY
www.reallygreatsite.com

ADVANCES IN TECHNOLOGY
www.reallygreatsite.com

INNOVATIONS AND INVENTIONS
www.reallygreatsite.com

2ND MILLENNIUM (ABC)
Presentations are communication tools that can
be used as lectures.

1ST MILLENNIUM (BC)
Presentations are communication tools that can
be used as lectures.

1ST MILLENNIUM (AD)
Presentations are communication tools that can
be used as lectures.

2ND MILLENNIUM (AD)
Presentations are communication tools that can
be used as lectures.

3RD MILLENNIUM (AD)
Presentations are communication tools that can
be used as lectures.

TIMELINE
BY MILLENIUM

94% OF
STUDENTS

Relationship with Technology

USE THEIR SMARTPHONES EVERY HOUR

Presentations are communication tools that can be
used as lectures.

Presentations are communication
tools that can be used as
demonstrations, lectures, srpeeches,
reports, and more.

Item 1 Item 2 Item 3 Item 4 Item 5

40

30

20

10

0

NUMBER OF
DEVICES
BY AGE GROUP

USE OF TECHNOLOGY

PERSONAL USE
Presentations are
tools that can be
used as lectures.

COMMUNITY
USE

Presentations are
tools that can be
used as lectures.

GLOBAL USE
Presentations are
tools that can be
used as lectures.

GROUP 3
MEMBERS
MEET OUR TEAM

MITCHELL TRINIDAD
Group Speaker

NANETTE PRESTON
Group Leader

HANNAH REMINGTON
Lead Researcher

