
Performance Archaeology
Tomas Vondra, Microsoft

vondratomas@microsoft.com / tomas@vondra.me
https://vondra.me

pgconf.eu 2024, Athens

slides feedback

mailto:vondratomas@microsoft.com
mailto:tomas@vondra.me
https://vondra.me

Agenda

● Intro
○ Why do this at all?

● OLTP
○ TPC-B (pgbench), starjoin

● OLAP
○ TPC-H (data loads + queries)

● Future
○ What might happen?

Motivation

● How did the performance evolve over time?
○ actually quite tricky question for long time periods

● typical development benchmarks not useful
○ compare two commits, maybe focused on a small piece of the code

● sometimes people compare two releases (old + new)
○ difficult to combine the effects (hardware changes, ...)

● application performance is not good either
○ application changes, hardware gets upgraded, data size grows, ...

Not entirely fair ...

● development happens in the context of current hardware
○ 20 years ago we had much less RAM / fewer cores, spinning rust, ...

● hardware determines focus of tuning / optimization
○ If your workload is I/O-bound, who cares about CPU?

○ If you have 4 cores, why would you care about 100+ cores?

● a lot of stuff improved outside of Postgres too
○ we're not on kernel 2.6 anymore ...

● users see a compounded effect of all those improvements
○ hardware + OS + Postgres

Let's do some benchmarks!

(there'll be a lot of numbers & charts)

(short version)

It's much faster / much more scalable.

OLTP

Hardware used

xeon (OLTP, ~2016)

● 2x Xeon E52699v4 (44 cores / 88 threads)

● 64GB RAM

● WD Ultrastar DC SN640 960GB

(NVMe SSD, PCIe 3.1)

● Debian 12.7 (kernel 6.10)

● ext4

● gcc 12.2.0

TPC-B

● dataset sizes:
○ small - fits into shared buffers (locking)

○ medium - fits into RAM (CPU-bound)

○ large - larger than RAM (I/O-bound)

● modes: read-only & read-write

● client counts: 1, 16 32, 64, 128, 256

● short runs (minutes)

● unified configuration (shared_buffers=2GB, max_wal_size=128GB, ...)

● pgbench always from PG18

pgbench / read-only / 1.5GB

pgbench / read-write / 1.5GB

pgbench / read-only / 150GB

starjoin

● TPC-B is rather simplistic (no joins, ...)
○ representative of the most trivial OLTP applications only

● let's try "OLTP starjoin"
○ "point" join query in a normalized schema

○ "main" table with multiple (by PK) joined to "dimensions"

● very common query pattern
○ example: payment + info for different payment types

● let's assume cached data, 10 dimensions

OLTP starjoin

SELECT * FROM t

 JOIN dim1 ON (t.id1 = dim1.id)

 JOIN dim2 ON (t.id2 = dim2.id)

 JOIN dim3 ON (t.id3 = dim3.id)

 JOIN dim4 ON (t.id4 = dim4.id)

 ...

 JOIN dim10 ON (t.id10 = dim10.id)

WHERE t.id = 3498398;

OLTP starjoin / 10M rows / simple

fast-path locking

fast-path locking

?

OLTP starjoin / 10M rows / prepared

OLTP starjoin / 10M rows / LEFT JOIN

OLTP summary & future

● massive scalability improvements
○ often 20-50x for many clients

○ small regressions with few clients (not clear from charts)

○ fast-path locking 9.2, many improvements in 9.5 + 9.6 (locking, ...)

● weird inversions are gone (since ~9.4)
○ "prepared" slower than "simple", throughput with more clients tanking

● seems we're out of "low hanging fruit" :-(
○ lot of effort for small incremental improvements (~5%)

● throughput test ignores "consistency" (got much better)

pgbench / 1.5GB / with BOLT

OLAP

Hardware used

i5 (OLAP, ~2012)

● i5-2500k (4 cores / 4 threads)

● 16GB RAM

● 6x Intel DC S3700 100GB

(SATA SSD, RAID0)

● Debian 12.7 (kernel 6.10)

● ext4

● gcc 12.2.0

TPC-H (simplified)

● 10GB (not the largest, but sufficient for this)

● 22 queries, stressing different operators

● data loads (copy, create index, ...)

TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark
Peter Boncz, Thomas Neumann, and Orri Erling
https://homepages.cwi.nl/~boncz/snb-challenge/chokepoints-tpctc.pdf

https://homepages.cwi.nl/~boncz/snb-challenge/chokepoints-tpctc.pdf

effective_io_concurrency

index-only scans

parallelism

sorting/locking
FK estimates

?

OLAP "regressions"

● more complex queries => harder to plan
● GUC default changes

○ not a "real" regression, but annoying (unexpected) plan changes

● effective_cache_size higher
○ assumption data is "cached" / random I/O cheaper (what if not the case?)

● effective_io_concurrency
○ change of formula in PG 14 => shorter prefetch distance :-(

● FK join estimates
○ better estimates but got a worse plan in a couple places

● there are probably more
○ Incremental Sort makes it easier to hit underestimates

OLAP summary & future

● massive improvements over the years
○ 8.4 prefetching (bitmap scans)

○ 9.2 index-only scans

○ 9.6 (and later) parallelism

● mostly unchanged since PG 11

● possible incremental improvements (small gains)
○ parallel COPY, optimization using PGO/BOLT, ...

● significant improvements requires fundamental changes
○ columnar storage/executor, offloading to specialized analytical engines, ...

Summary

● pretty substantial improvements in the past

● but what to expect in the future?

● performance is not everything
○ ease of operation and features matter a lot too, of course ...

○ ... but that's not what this talk is about ;-)

OLTP

● What's the PG17 regression in "large" pgbench?

● Optimizing the starjoin "join order" issue would be huge.

● Can we learn something from BOLT to optimize binary?
○ -report-bad-layout

● plenty of "NUMA stuff" to improve
https://www.postgresql.eu/events/pgconfeu2024/schedule/session/5839-numa-vs-postgresql/

https://anarazel.de/talks/2024-10-23-pgconf-eu-numa-vs-postgresql/numa-vs-postgresql.pdf

https://www.postgresql.eu/events/pgconfeu2024/schedule/session/5839-numa-vs-postgresql/
https://anarazel.de/talks/2024-10-23-pgconf-eu-numa-vs-postgresql/numa-vs-postgresql.pdf

OLAP

● JIT / BOLT didn't help much (surprising)
○ How come? OLAP is very CPU-intensive.

○ might be due to -skip-funcs=ExecInterpExpr.*

● more radical rethink may be needed
○ columnar storage/executor may be needed (to compete with the best)

● complex plans cat get "wrong" easier
○ hints?

○ better tuning advice / automated tuning?

○ updating defaults more carefully?

Resources

● slides
○ https://vondra.me/pdf/postgres-archaeology-pgconfeu-2024.pdf

● (horrible) scripts + results
○ https://github.com/tvondra/postgres-archaeology

● glibc tuning matters
○ https://vondra.me/posts/tuning-the-glibc-allocator-for-postgres/

● want to reproduce / do something similar?
○ tomas@vondra.me

○ office hours

slides

feedback

https://vondra.me/pdf/postgres-archaeology-pgconfeu-2024.pdf
https://github.com/tvondra/postgres-archaeology
https://vondra.me/posts/tuning-the-glibc-allocator-for-postgres/
mailto:tomas@vondra.me

