
Your remote PostgreSQL DBA Team

Practical transactions theory for
PostgreSQL users
Ilya Kosmodemiansky

ik@dataegret.com

mailto:ik@dataegret.com

Plan
What is a transaction and why do we need them

How transactions are implemented

Transactions in PostgreSQL

2

Why do we need transactions?

How much?

Sum: EUR 1000

 to account B -100€
 to account C -200€

Sum: EUR ?

How?

send_money(src_acc, dst_acc, amount):
 balance := src_acc.balance();
 if(balance - amount > 0):
 dst_acc.balance += amount;
 src_acc.balance = balance - amount;
 return 0;
 else:
 return 1;

3

Why do wee need transactions?

Action 1

send_money(src_acc, dst_acc, amount):
 balance := src_acc.balance();
 if(balance - amount > 0):
 dst_acc.balance += amount;

 src_acc.balance = balance - amount;
 return 0;
 else:
 return 1;

Action 2

send_money(src_acc, dst_acc, amount):
 balance := src_acc.balance();
 if(balance - amount > 0):
 dst_acc.balance += amount;
 src_acc.balance = balance - amount;
 return 0;
 else:
 return 1;

4

What do we already learned?
Transfer actions consist of smaller simple actions

Results might be affected by order

If there is only one action, we do not have any problems

There is no problem to read data

Problems come when we write data

More concurency lead to more problems

5

What can we do?

Disk (Durable)

Memory

C C C C

ACIDD

6

Action with ACID properties
Atomicity - happens completely or fails completely

Consistency - brings data from one cosistent state to another

Isolation - “thinks" it happens alone

Durability - what is saved to disk is safe

7

Action with ACID properties
Atomicity - happens completely or fails completely

Consistency - brings data from one cosistent state to another

Isolation - “thinks" it happens alone

Durability - what is saved to disk is safe

We call such an action a Transaction

8

How transactions are implemented?

3 2 4 7 , P u b l i c d o m a i n , v i a W i k i m e d i a C o m m o n s

Problem: Serializability

In theory everything is simple

... as Reißverschlussverfahren

But in practice it is either slow
or cause failures

...or we need an algorythm

9

2 Phase Locking

G e r h a r d W e i k u m , G o t t f r i e d Vo s s e n , Tr a n s a c t i o n a l I n f o r m a t i o n S y s t e m s

1. Phase: We take all locks this
scope of transactions needs

2. Phase We release all those
locks and do not take new locks

It works, but:
it is slow

Deadlocks

10

Multi Version 2 Phase Locking

G e r h a r d W e i k u m , G o t t f r i e d Vo s s e n , Tr a n s a c t i o n a l I n f o r m a t i o n S y s t e m s

* Instead of waiting, we can read
or write an old version * Which is
also better for serialization

11

Multi Version 2 Phase Locking

G e r h a r d W e i k u m , G o t t f r i e d Vo s s e n , Tr a n s a c t i o n a l I n f o r m a t i o n S y s t e m s

Instead of waiting, we can read
or write an old version

Which is also better for
serialization

12

Postgres: inserting data

DRAM

Disks

shared_buffers

PostgreSQL

Linux

Page cache

Page

Dirty page

datafile WAL

insert into foo values(...)

WAL buffer

worker

13

Postgres: inserting data

Internal

StartTransactionCommand;
 StartTransaction;
ProcessUtility;
 BeginTransactionBlock;
CommitTransactionCommand;

StartTransactionCommand;
ProcessQuery;
CommitTransactionCommand;
 CommandCounterIncrement;

StartTransactionCommand;
ProcessUtility;
 EndTransactionBlock;
CommitTransactionCommand;
 CommitTransaction;

SQL

BEGIN;

INSERT...

COMMIT

 14

in PostgreSQL everything is transactional

a writing transaction get a XID

each tuple has xmin (XID of the "yangest" transaction which has
updated this tuple

and xmax (XID of the oldest transaction which can see this tuple

each backend has its xmin and syncronizes it through
MyProc->xmin - it is a way how Snapshot works

15

PostgreSQL is a MVCC Database

that dooesn't mean, that there is no 2PL

it is possible to go through many old versions, but through all of
them

At some point we were considering such an architeckture as a fail,
but now it is rather future

16

Questions?

ik@dataegret.com

17

mailto:ik@dataegret.com

